1樓:匿名使用者
如果數字不可重複:
0不能首位,所以第一位1-9選1個數,9種取法第二位十個數排除第一位,9個數選1個數,9種取法第三位繼續,8種
第四位7種
9*9*8*7
以0歸類:0在個位,9*8*7個
0在十位,9*8*7個
0在千位,9*8*7個
無0, 9*8*7*6個
相加得 (6+3)*9*8*7=4536個如果可以重複:因為0不能在首位,9*10*10*10=9000個
2樓:斜陽殘照冷月寂
4536種 千位不能為零 可以放1到9 9種
百位可以放除了千位佔的數還剩9個數 9種十位可以放除了千位和百位佔的數還剩8個數 8種個位可以放除了千位,百位和十位佔的數還剩7個數 7種所以總共有9x9x8x7=4536種 你可以看看高中數學的排列組合 我好多年前學的了 現在不熟了
3樓:匿名使用者
含0的4位數=c(9,3)p(3,1)p(3,3)=1512
不含0的4位數=p(9,4)=3024
兩者相加=4536
4樓:匿名使用者
c(9,1)*c(9,3)=9*9*8*7/(3*2*1)=756 個
太多了,無法一一列舉。
0到9十個數字,任意4位陣列合,數字不重複,如何用excel**表示
5樓:姓王的
用以下復巨集制**可達到目的:
sub 四位
陣列合()
for a1 = 1 to 9
for a2 = 0 to 9
if a2 <> a1 then
for a3 = 0 to 9
if a3 <> a1 and a3 <> a2 thenfor a4 = 0 to 9
if a4 <> a1 and a4 <> a2 and a4 <> a3 then
n = n + 1
range("a" & n) = a1 & a2 & a3 & a4end if
next
end if
next
end if
next
next
end sub
6樓:匿名使用者
共有210個。見
附表:版
sub 巨集
7樓:匿名使用者
@復nhking 「回答
***/question/1690163461348036348 的2023年bai6月12日回答210組,列出du才209個組zhi合,漏了那一組dao合,望大家複核解答補充
8樓:匿名使用者
單元格 縱列,右鍵,選單元格格式,自定義,0000
輸入函式 =rand()*10000
數字0-9十個數字組合成4位數最多有幾種不重複的組合
9樓:賣血買房者
解:首位數字有1-9 9種選擇
其次是9種選擇
再次是8種選擇
最後是7種選擇
組合有9×9×8×7=4536種
10樓:李紅
根據乘法原抄理來做
乘法原理:bai
做一件事,完成它需要分成n個步驟du,做第一步有m1種不同zhi的方法dao,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法,那麼完成這件事共有n=m1×m2×m3×…×mn種不同的方法.
要組成四位數分成4個步驟,第一步看千位數不能為0,要不然就不是4位數了,有1-9共9個數可填;第二步填百位上數,0-9共10個數,由於千位上用掉一個了,那就還剩9個數可選;第三步填十位上的數,由於千位和百位各用掉一個,就剩8個數,所以有8個數可選,第4步填個位,就在剩下的7個數種選了!因此,組合成4位數共有:9*9*8*7=4536種不重複的組合!
11樓:樂培勝樹雀
數字可重複:
9000
(四位數從1000到9999共計9000個);
數字不重複:10選4的排列
p(10,4)=10x9x8x7=
5040。
0-9這十個數字的四位陣列合有多少組?各是什麼?數字可以重複..或者有什麼這種**```謝謝了各位!
12樓:匿名使用者
既然可以重複,則樓上的錯誤.0不能在第一位,則正確的是9*10*10*10=9000組
13樓:絕望之希望
第一位除了0都可以,有9種可能 ;
第二位有10種可能;
第三位10種可能;
第四位10種可能。
共有9*10*10*10=9000種可能。
14樓:匿名使用者
從1000到9999一共有9000個數
15樓:匿名使用者
9*10*10*10+9*10*10+9*10+10=9000+900+90+10=10000
16樓:匿名使用者
9*9*8*7=4536(組)
從0到9這十個數中任選4個數,組成四位數,有多少種組合?最好把這些組合也列出來。非常感謝!情況緊急,請
17樓:西域牛仔王
四位數要求0不能在最高位。
按題目的意思,這樣的四位數,數字是不重複的,所以共有 c(9,1)*c(9,3)=9*9*8*7/(3*2*1)=756 個。
太多,無法一一列舉。
1023,1024,1025,1026,1027,1028,1029,1032,1034,1035,。。。
18樓:愛吃鹹肉菜飯
解:依題意:四位數首位必須從1~9之間任選一個數,個位到百位則無要求,因為千位的可選項為9,另3位的可選項都為10,因此根據乘法原理,得到此四位數有9000種(即1c9*1c10*1c10*1c10=9*10*10*10=9000)
4個數字能有多少個四位數的組合
19樓:_深__藍
四個數字組成四位數的組合有24種,計算方法:4!=4*3*2*1=24個。計算有多少種組合可以使用排列組合的方法,例如2345可以組成24個四位數,這24個四位數分別是:
5234、5243、5324、5342、5432、54232534、2543、2354、2345、2453、24353524、3542、3245、3254、3425、34524325、4352、4235、4253、4523、4532排列組合方法可以用來計算排序和組合問題:
⒈、加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法,那麼完成這件事共有n=m1+m2+m3+…+mn種不同方法。
⒉、第一類辦法的方法屬於集合a1,第二類辦法的方法屬於集合a2,……,第n類辦法的方法屬於集合an,那麼完成這件事的方法屬於集合a1ua2u…uan。
20樓:zhao愛的滿全
在這裡必須看到4個數字是否相同的情形
1.如果4個數字都相同,那四位數就只有1個2.如果有3個相同,1個不同,那麼就有4個四位數3.如果是4個不同的數字,那就是24種。
4.如果四個數字有0.有18
21樓:農家成長的孩子
小學四年級奧數:簡單例舉用1,2,3,4這4個數字,可以組成多少個不同的四位數?(在組成的數中,每個數字只能用一次)
從0到9十個數字中選出有0和9任意5個數有多少種組合
22樓:古方紅糖
這是原先數學上的排列組合,總計五位數,總共十個數字,那麼第一位數有10個選擇,第二位數有9個選擇,第三位數有8個選擇,第四位數有7個選擇,第五位數有6個選擇,那麼總的組合的數量是10*9*8*7*6=30240種組合。
23樓:匿名使用者
從0到9十個數選出有0和9的任意5個數,即從剩餘8個數中任取3個數有c³8=8x7x6/3x2x1=56種
24樓:長士恩竇羅
首先,5位數必須確保最高位不能為0【這是隱含條件】其次,最高位從1-9中任意選一個,有9種
最後,千位到個位從0-9中選擇,每一位都有10種,所以是10^4=10000
所以,總共可以組成9×10000=90000種組合
用0到9這十個數字組成四位數一共能組成多少組?
25樓:白日衣衫盡
不重複的情況:
千位數可以在1~9之間選擇,有9種可能
百位數在剩下的9個數中選擇,有9種可能
十位數在剩下的8個數中選擇,有8種可能
個位數在剩下的7個數中選擇,有7種可能
9x9x8x7=4536
一共能組成4536組
數字可以重複的情況:
千位數可以在1~9之間選擇,有9種可能
百位數可以在0~9之間選擇,有10種可能
十位數可以在0~9之間選擇,有10種可能
個位數可以在0~9之間選擇,有10種可能
9x10x10x10=9000
一共能組成9000組
26樓:現實社會
一共能組成4536組。
千位數可以在1~9之間選擇,有9種可能;
百位數在其餘的9個數中選擇,有9種可能;
十位數在其餘的8個數中選擇,有8種可能;
個位數在其餘的7個數中選擇,有7種可能。
數字0到9這十位數中,組成按不同順序的四位陣列合,有多少種組合方式? 40
27樓:匿名使用者
含0的有:3×a(9,3)=3×9×8×7種;
不含0的有:a(9,4)=9×8×7×6種;
所以共有:3×9×8×7+9×8×7×6種
28樓:匿名使用者
可不可以重複,如果不能:9*10*10*10=9000種
如果可以:0000至9999.10000種
29樓:大淇媽媽寶愛人
是無重複的四位數嗎
如果是就是10*9*8*7-9*8*7
30樓:藍色大劍
9*10*10*10=9000種
從0到9八位數任意組合有多少種排列方式
如果允許重複,有10 8 100 000 000 種排列方式 如果不允許重複,有a 10,8 10 9 8 7 6 5 4 3 1814400 種排列方式 0到9是10位數,1到8是8位數 9 10 10 10 9000種 千位數是1到9種任何一個,百位數十位數個位數是0到9種任何一個 從1到9八位...
有0到9組成的沒有重複的四位數的和是多少
p 10,4 10 9 8 7 5040個0開頭的數不是四位數,0開頭的數有 p 9,3 9 8 7 504個 0開頭的數,百位 十位 個位上的1 2 3 9都是8 7 56個四位數共有 5040 504 4536個 千位上的1 2 3 9都是9 8 7 504個 1 2 9 504 22680 5...
在0這數字中選出組成符合要求的四位數,二或五的倍數最小是多少
在5 7 9 1 0這五個數字中選出四個組成符合要求的四位數,二或五的倍數最小是1570。從0123456789這十個數中選出4個不同數字,組成一個四位數,使它同時是2357的倍數。這個數最大是幾?結果為 9870 解題過程如下 整除的基本性質 若b a,c a,且b和c互質,則bc a。對任意非零...