矩陣是什麼意思,矩陣是什麼意思

2021-05-27 20:07:20 字數 6270 閱讀 7562

1樓:蘋果裡的毛毛蟲

矩陣就是一堆數在站方隊。。。轉置矩陣就是換一個站法。。。

組織矩陣是什麼意思?

2樓:高頓財經教育

同學你好,很高興為您解答!

在組織的同一部分,同時利用指揮的職能鏈和部門鏈的組織結構。

矩陣組織結構又稱規劃-目標結構,是把按職能劃分的部門和按產品(或專案、服務等)劃分的部門結合起來組成一個矩陣,是同一名員工既同原職能部門保持組織與業務上的聯絡,又參加產品或專案小組的工作的一種結構。

希望我的回答能幫助您解決問題,如您滿意,請採納為最佳答案喲。

高頓祝您生活愉快!

「矩陣」是什麼意思?

3樓:鄭浩勤

矩陣【拼bai音】:jǔ zhèn

【釋義du】:

在數學中,矩陣(

zhimatrix)是一個按照長dao

方陣列排列

回的複數或實數集合,最答早來自於方程組的係數及常數所構成的方陣。這一概念由19世紀英國數學家凱利首先提出。

、矩陣是高等代數學中的常見工具,也常見於統計分析等應用數學學科中。 在物理學中,矩陣於電路學、力學、光學和量子物理中都有應用;電腦科學中,三維動畫製作也需要用到矩陣。 矩陣的運算是數值分析領域的重要問題。

將矩陣分解為簡單矩陣的組合可以在理論和實際應用上簡化矩陣的運算。對一些應用廣泛而形式特殊的矩陣,例如稀疏矩陣和準對角矩陣,有特定的快速運算演算法。

數值分析的主要分支致力於開發矩陣計算的有效演算法,這是一個幾個世紀以來的課題,是一個不斷擴大的研究領域。 矩陣分解方法簡化了理論和實際的計算。 針對特定矩陣結構(如稀疏矩陣和近角矩陣)定製的演算法在有限元方法和其他計算中加快了計算。

無限矩陣發生在行星理論和原子理論中。 無限矩陣的一個簡單例子是代表一個函式的泰勒級數的導數運算元的矩陣。[

4樓:代任岑安安

由方程組的係數及常數所構成的

方陣。把用在解

線性方程組

上既方便,又直觀。例如對於方程組:

a1x+b1y+c1z=d1

a2x+b2y+c2z=d2

a3x+b3y+c3z=d3

來說,我們可以構成兩個矩陣:

a1b1c1a1b1c1d1

a2b2c2a2b2c2d2

a3b3c3a3b3c3d3

因為這些

數字是有規則地排列

在一起,形狀像矩形,所以數學家們稱之為矩陣,通過矩陣的變化,就可以得出方程組的解來。

矩陣這一

具體概念

是由19世紀英國

數學家凱利首先提出並形成矩陣代數這一

系統理論

的。但是追根溯源,矩陣最早出現在我國的<九章算術>中,在<九章算術>方程一章中,就提出瞭解線性方程各項的係數、常數按順序排列成一個長方形的形狀。隨後移動處籌,就可以求出這個方程的解。

在歐洲,運用這種方法來解線性方程組,比我國要晚2000多年。

數學上,一個m×n矩陣乃一m行n列的矩形

陣列。矩陣由陣列成,或更一般的,由某環中

元素組成。

矩陣常見於線性代數、線性規劃、統計分析,以及

組合數學

等。請參考矩陣理論。

歷史矩陣的研究歷史悠久,

拉丁方陣和幻方

在史前年代已有人研究。

作為解決線性方程的工具,矩陣也有不短的歷史。2023年,微積分的發現者之一

戈特弗裡德·威廉·萊布尼茨

建立了行列式

論(theory

ofdeterminants)。2023年,

加布里爾·克拉默

其後又定下了克拉默法則。2023年代,高斯和威廉·

若爾當建立了高斯—若爾當消去法。

2023年

詹姆斯·約瑟夫·西爾維斯特

首先創出matrix

一詞。研究過矩陣論的著名數學家有凱萊、

威廉·盧雲·哈密頓

、格拉斯曼、

弗羅貝尼烏斯

和馮·諾伊曼

。定義和相關

符號以下是一個4×

3矩陣:

某矩陣a的第i

行第j列,或i,j位,通常記為

a[i,j]

或ai,j。在上述例子中

a[2,3]=7。

在c語言中,亦以

a[i][j]

表達。(值得注意的是,與一般矩陣的

演算法不同,在c中,"行"和"列"都是從0開始算起的)此外a

=(aij),意為

a[i,j]

=aij

對於所有i及

j,常見於數學著作中。

一般環上構作的矩陣

給出一環

r,m(m,n,

r)是所有由

r中元素排成的m×n

矩陣的集合。若

m=n,則通常記以

m(n,r)。這些矩陣可加可乘

(請看下面),故

m(n,r)

本身是一個環,而此環與左r模

rn的自同態環同構。若r

可置換,

則m(n,

r)為一帶單位元的

r-代數。其上可以萊布尼茨公式定義

行列式:一個矩陣可逆當且僅當其行列式在

r內可逆。

在維基百科內,除特別指出,一個矩陣多是實數矩陣或虛數矩陣。

分塊矩陣

分塊矩陣

是指一個大矩陣分割成「矩陣的矩陣」。舉例,以下的矩陣可分割成4個

2×2的矩陣。

此法可用於簡化運算,簡化數學證明,以及一些電腦應用如vlsi

晶片設計

等。對稱矩陣

對稱矩陣是相對其主對角線(由左上至右下)對稱,

即是ai,j=aj,i。

埃爾米特矩陣(或自共軛矩陣)是相對其主對角線以複共軛方式對稱,

即是ai,j=a*j,i。

特普利茨矩陣在任意對角線上所有元素相對,

是ai,j=ai+1,j+1。

隨機矩陣所有列都是概率向量,

用於馬爾可夫鏈。

矩陣運算

給出m×n矩陣a

和b,可定義它們的和a+

b為一m×n矩陣,等

i,j項為(a+

b)[i,j]=

a[i,j]+

b[i,

j]。舉例:

另類加法可見於矩陣加法.

若給出一矩陣

a及一數字

c,可定義標量積

ca,其中

(ca)[i,j]=

ca[i,

j]。例如

這兩種運算令

m(m,

n,r)

成為一實數

線性空間

,維數是mn.

若一矩陣的列數與另一矩陣的行數相等,則可定義這兩個矩陣的乘積。如a是

m×n矩陣和b是

n×p矩陣,它們是乘積

ab是一個

m×p矩陣,其中

(ab)[i,j]=

a[i,1]*

b[1,j]+

a[i,2]*

b[2,j]+

...+

a[i,n]*

b[n,

j]對所有i及

j。例如

此乘法有如下性質:

(ab)c

=a(bc)

對所有k×m

矩陣a,

m×n矩陣b及

n×p矩陣

c("結合律").(a+

b)c=ac+

bc對所有

m×n矩陣a及

b和n×k矩陣

c("分配律")。

c(a+b)=

ca+cb對所有

m×n矩陣a及

b和k×m矩陣

c("分配律")。

要注意的是:可置換性不一定成立,即有矩陣a及

b使得ab≠

ba。對其他特殊乘法,見

矩陣乘法

。線性變換,秩,轉置

矩陣是線性變換的便利表達法,皆因矩陣乘法與及線性變換的合成有以下的連繫:以rn

表示n×1

矩陣(即長度為n的向量)。對每個線性變換f:

rn->

rm都存在唯一

m×n矩陣a使得

f(x)=ax

對所有x

∈rn。

這矩陣a

"代表了"

線性變換

f。今另有

k×m矩陣

b代表線性變換g:

rm->

rk,則矩陣積

ba代表了線性變換go

f。矩陣

a代表的線性代數的

映像的維數稱為

a的矩陣秩。矩陣秩亦是

a的行(或列)生成空間的維數。

m×n矩陣

a的轉置是由行列交換角式生成的

n×m矩陣

atr(亦紀作at或

ta),即

atr[i,j]=

a[j,

i]對所有

iand

j。若a

代表某一線性變換則

atr表示其

對偶運算元

。轉置有以下特性:(a+

b)tr

=atr

+btr,(ab)tr

=btratr。

5樓:鹹蛋沒事幹

老運營都在說的矩陣是什麼意思?

線性代數中,矩陣,a*是什麼意思?

6樓:匿名使用者

矩陣a*表示a矩陣的伴隨矩陣。

伴隨矩陣的定義:某矩陣a各元素的代數餘子式,組成一個新的矩陣後再進行一下轉置,叫做a的伴隨矩陣。

某元素代數餘子式就是去掉矩陣中某元素所在行和列元素後的形成矩陣的行列式,再乘上-1的(行數+列數)次方。

伴隨矩陣的求發:當矩陣是大於等於二階時:

主對角元素是將原矩陣該元素所在行列去掉再求行列式。

非主對角元素是原矩陣該元素的共軛位置的元素去掉所在行列求行列式乘以(-1)^(x+y) x,y為該元素的共軛位置的元素的行和列的序號,序號從1開始的。

主對角元素實際上是非主對角元素的特殊情況,因為x=y,所以(-1)^(x+y)=(-1)^(2x)=1,一直是正數,沒必要考慮主對角元素的符號問題。

7樓:匿名使用者

你只要知道他是表示伴隨矩陣。對於什麼是伴隨矩陣,一樓已經講清楚了,

我不想再羅嗦,但是說實話,這個定義沒有用,做了這麼多題目了,就伴隨從來沒有用這個定義來做過。注意,你要掌握的是:a的逆=a*除以|a|.用這個公式來求解a*

8樓:jc飛翔

a*是伴隨矩陣

a的餘子矩陣是一個n×n的矩陣c,使得其第i 行第j 列的元素是a關於第i 行第j 列的代數餘子式。 引入以上的概念後,可以定義:矩陣a的伴隨矩陣是a的餘子矩陣的轉置矩陣。

9樓:夢裡尋它千百回

假設a代表一個矩陣,它有n行n列。取出a中第一行第一列,剩餘元素構成行列式的值是a*的第一行第一列的元素;同理,a除去第一行第二列的行列式的值是a*的第二行第一列的元素值;...以此類推得到a*,叫做a的伴隨矩陣。

線性代數矩陣中|a|與a*是什麼意思?

10樓:不是苦瓜是什麼

|是|a|是a的行列式,又記為deta,a*是指矩陣a的伴隨矩陣,是由a的元素的代數餘子式按照交換行列標的順序構成的同級矩陣。

伴隨矩陣的定義:某矩陣a各元素的代數餘子式,組成一個新的矩陣後再進行一下轉置,叫做a的伴隨矩陣。

某元素代數餘子式就是去掉矩陣中某元素所在行和列元素後的形成矩陣的行列式,再乘上-1的(行數+列數)次方。

aa*=a*a=|a|e。

證明其實整體不算難,一個是要想到那個矩陣秩不等式,會靈活運用,另一個是要想到矩陣秩的另一個定義。一般矩陣秩是定義為行向量組的極大線性無關組的向量個數,其實矩陣秩還有另一個定義:最高階非0子式的階數。

當a的秩為n時,a可逆,a*也可逆,故a*的秩為n;當a的秩為n-1時,根據秩的定義可知,a存在不為0的n-1階餘子式,故a*不等於0,又根據上述公式aa*=0而a的秩小於n-1可知a的任意n-1階餘子式都是0,a*的所有元素都是0,是0矩陣,秩也就是0。

11樓:萬物凋零時遇見

|a|是a的行列式,又記為deta,a*是指矩陣a的伴隨矩陣,是由a的元素的代數餘子式按照交換行列標的順序構成的同級矩陣。 伴隨矩陣的定義:某矩陣a各元素的代數餘子式,組成一個新的矩陣後再進行一下轉置,叫做a的伴隨矩陣。

某元素代數餘子式就是去掉矩陣中某元素所在行和列元素後的形成矩陣的...」

矩陣A,B是什麼意思,矩陣BA,b是什麼意思

e oo o 代表左上三角矩陣,0就是全為零。a,b 一般指的是矩陣a的增廣矩陣 一般矩陣是不加 的,但單行矩陣由於可以視為向量,向量組所以加 如 x1,x2,x3,x4,x5 和 1,2,3,4,5,6 這裡x是數,是向量 所以單行矩陣特別 和 的都是矩陣 但不能用 e是對角線為1,其餘為0的方矩...

矩陣AB什麼意思,矩陣A,B是什麼意思

這是分塊矩陣 當a可逆時可解矩陣方程ax b 對線性方程組ax b,a,b 是其增廣矩陣 矩陣 a,b 是什麼意思?a,b是列數相同 行數不同的兩個矩陣。則 a,b 沒有意義 只有a,b的行數相等時,a,b 才有意義,就是把這兩個矩陣按a左b右的方式拼出的一個矩陣。矩陣 a b 等於 a b 嗎 一...

矩陣a小於等於矩陣b是什麼意思,matlab矩陣運算AB,代表什麼意思

這是分塊矩陣 可用於解矩陣方程 ax b b是一個列向量時,用於解線性方程組 ax b 這是分塊矩陣 當a可逆時可解矩陣方程ax b 對線性方程組ax b,a,b 是其增廣矩陣 matlab矩陣運算 a b 代表什麼意思 a b,是一個150 2的矩陣,新矩陣的第n行是a裡的第b n 行 要使得a ...