中位數用來表示什麼合適,中位數和眾數是10,用什麼數來表示一般

2021-05-28 09:20:43 字數 5694 閱讀 8169

1樓:匿名使用者

中位數:作為一組資料的代表,可靠性比較差,因為它只利用了部分資料。但當一組資料的個別資料偏大或偏小時,用中位數來描述該組資料的集中趨勢就比較合適。

2樓:匿名使用者

中位數的優點是不受偏大或偏小資料的影響,因此,有時用它代表全體資料的一般水平更合適。

中位數和眾數是10,用什麼數來表示一般

3樓:匿名使用者

用中位數來

表示為了描述一組資料的集中趨勢,可以用平均數、中位數和眾數來代表,這三個統計量各有特點。平均數表示一組資料的平均水平,中位數表示一組資料的一般水平。

(1)平均數的大小與一組資料裡每一個資料均有關係,其中任何資料的變動都會相應引起平均數的變動。

(2)中位數僅與資料的排列位置有關,即當一組資料按從小到大(或從大到小)的順序排列,最中間的資料即為中位數。因此,某些資料的變動對它的中位數沒有影響。當一組資料的個別資料變動較大時,可用中位數來描述資料的集中趨勢。

(3)眾數著眼於對資料出現次數的考察,眾數的大小隻與這組資料中的部分資料相關。當一組資料中有不少資料多次重複出現時,其眾數往往被我們關注。

一組資料,讓你用平均數、眾數、中位數來表示,問什麼時候用眾數,什麼時候用中位數,什麼時候用中位數。

4樓:明月·冪峰龍珊

在描述分數成績、體重標準等時候用平均數。

在描述一組資料的中等水平、集中趨勢的時候用中位數。

在描述一組資料的多數水平的時候用眾數。

補充:它們之間的區別,主要表現在以下方面。

1、定義不同

平均數:一組資料的總和除以這組資料個數所得到的商叫這組資料的平均數。

中位數:將一組資料按大小順序排列,處在最中間位置的一個數叫做這組資料的中位數 。

眾數:在一組資料中出現次數最多的數叫做這組資料的眾數。

2、求法不同

平均數:用所有資料相加的總和除以資料的個數,需要計算才得求出。

中位數:將資料按照從小到大或從大到小的順序排列,如果資料個數是奇數,則處於最中間位置的數就是這組資料的中位數;如果資料的個數是偶數,則中間兩個資料的平均數是這組資料的中位數。它的求出不需或只需簡單的計算。

眾數:一組資料中出現次數最多的那個數,不必計算就可求出。

3、個數不同

在一組資料中,平均數和中位數都具有惟一性,但眾數有時不具有惟一性。在一組資料中,可能不止一個眾數,也可能沒有眾數。

4、呈現不同

平均數:是一個「虛擬」的數,是通過計算得到的,它不是資料中的原始資料。

中位數:是一個不完全「虛擬」的數。當一組資料有奇數個時,它就是該組資料排序後最中間的那個資料,是這組資料中真實存在的一個資料;但在資料個數為偶數的情況下,中位數是最中間兩個資料的平均數,它不一定與這組資料中的某個資料相等,此時的中位數就是一個虛擬的數。

眾 數:是一組資料中的原資料 ,它是真實存在的。

5、代表不同

平均數:反映了一組資料的平均大小,常用來一代表資料的總體 「平均水平」。

中位數:像一條分界線,將資料分成前半部分和後半部分,因此用來代表一組資料的「中等水平」。

眾數:反映了出現次數最多的資料,用來代表一組資料的「多數水平」。

這三個統計量雖反映有所不同,但都可表示資料的集中趨勢,都可作為資料一般水平的代表

6、特點不同

平均數:與每一個資料都有關,其中任何資料的變動都會相應引起平均數的變動。主要缺點是易受極端值的影響,這裡的極端值是指偏大或偏小數,當出現偏大數時,平均數將會被抬高,當出現偏小數時,平均數會降低。

中位數:與資料的排列位置有關,某些資料的變動對它沒有影響;它是一組資料中間位置上的代表值,不受資料極端值的影響。

眾數:與資料出現的次數有關,著眼於對各資料出現的頻率的考察,其大小隻與這組資料中的部分資料有關,不受極端值的影響,其缺點是具有不惟一性,一組資料中可能會有一個眾數,也可能會有多個或沒有 。

7、作用不同

平均數:是統計中最常用的資料代表值,比較可靠和穩定,因為它與每一個資料都有關,反映出來的資訊最充分。平均數既可以描述一組資料本身的整體平均情況,也可以用來作為不同組資料比較的一個標準。

因此,它在生活中應用最廣泛,比如我們經常所說的平均成績、平均身高、平均體重等。

中位數:作為一組資料的代表,可靠性比較差,因為它只利用了部分資料。但當一組資料的個別資料偏大或偏小時,用中位數來描述該組資料的集中趨勢就比較合適。

眾數:作為一組資料的代表,可靠性也比較差,因為它也只利用了部分資料。。在一組資料中,如果個別資料有很大的變動,且某個資料出現的次數最多,此時用該資料(即眾數)表示這組資料的「集中趨勢」就比較適合。

平均數、中位數和眾數的聯絡與區別:

平均數應用比較廣泛,它作為一組資料的代表,比較穩定、可靠。但平均數與一組資料中的所有資料都有關係,容易受極端資料的影響;簡單的說就是表示這組資料的平均數。中位數在一組資料中的數值排序中處於中間的位置,人們由中位數可以對事物的大體進行判斷和掌控,它雖然不受極端資料的影響,但可靠性比較差;所以中位數只是表示這組資料的一般情況。

眾數著眼對一組資料出現的頻數的考察,它作為一組資料的代表,它不受極端資料的影響,其大小與一組資料中的部分資料有關,當一組資料中,如果個別資料有很大的變化,且某個資料出現的次數較多,此時用眾數表示這組資料的集中趨勢,比較合適,體現了整個資料的集中情況。

平均數、中位數和眾數它們都有各自的的優缺點:

平均數:(1)需要全組所有資料來計算;

(2)易受資料中極端數值的影響.

中位數:(1)僅需把資料按順序排列後即可確定;

(2)不易受資料中極端數值的影響.

眾 數:(1)通過計數得到;

(2)不易受資料中極端數值的影響

怎麼分辨什麼時候用眾數,平均數,中位數來表示一組資料的平均水平

5樓:沒好時候

⒈眾數。

一組資料中出現次數最多的那個資料,叫做這組資料的眾數。

⒉眾數的特點。

①眾數在一組資料中出現的次數最多;②眾數反映了一組資料的集中趨勢,當眾數出現的次數越多,它就越能代表這組資料的整體狀況,並且它能比較直觀地瞭解到一組資料的大致情況。但是,當一組資料大小不同,差異又很大時,就很難判斷眾數的準確值了。此外,當一組資料的那個眾數出現的次數不具明顯優勢時,用它來反映一組資料的典型水平是不大可靠的。

3.眾數與平均數的區別。

眾數表示一組資料中出現次數最多的那個資料;平均數是一組資料中表示平均每份的數量。

4.中位數的概念。

一組資料按大小順序排列,位於最中間的一個資料(當有偶數個資料時,為最中間兩個資料的平均數)叫做這組資料的中位數。

5.眾數、中位數及平均數的求法。

①眾數由所給資料可直接求出;②求中位數時,首先要先排序(從小到大或從大到小),然後根據資料的個數,當資料為奇數個時,最中間的一個數就是中位數;當資料為偶數個時,最中間兩個數的平均數就是中位數。③求平均數時,就用各資料的總和除以資料的個數,得數就是這組資料的平均數。

6.中位數與眾數的特點。

⑴中位數是一組資料中唯一的,可能是這組資料中的資料,也可能不是這組資料中的資料;

⑵求中位數時,先將資料有小到大順序排列,若這組資料是奇數個,則中間的資料是中位數;若這組資料是偶數個時,則中間的兩個資料的平均數是中位數;

⑶中位數的單位與資料的單位相同;

⑷眾數考察的是一組資料中出現的頻數;

⑸眾數的大小隻與這組數的個別資料有關,它一定是一組資料中的某個資料,其單位與資料的單位相同;

(6)眾數可能是一個或多個甚至沒有;

(7)平均數、眾數和中位數都是描述一組資料集中趨勢的量。

7.平均數、中位數與眾數的異同:

⑴平均數、眾數和中位數都是描述一組資料集中趨勢的量;

⑵平均數、眾數和中位數都有單位;

⑶平均數反映一組資料的平均水平,與這組資料中的每個數都有關係,所以最為重要,應用最廣;

⑷中位數不受個別偏大或偏小資料的影響;

⑸眾數與各組資料出現的頻數有關,不受個別資料的影響,有時是我們最為關心的資料。

8.平均數、眾數和中位數三種統計資料在生活中的意義。

平均數說明的是整體的平均水平;眾數說明的是生活中的多數情況;中位數說明的是生活中的中等水平。

9.如何通過平均數、眾數和中位數對錶面現象到背景材料進行客觀分析。

在個別的資料過大或過小的情況下,「平均數」代表資料整體水平是有侷限性的,也就是說個別極端資料是會對平均數產生較大的影響的,而對眾數和中位數的影響則不那麼明顯。所以,這時要用眾數活中位數來代表整體資料更合適。即:

如果在一組相差較大的資料中,用中位數或眾數作為表示這組資料特徵的統計量往往更有意義。數是樣本中出現次數最多的那個數。他們都可以來估計期望

描述資料集中趨勢和離散程度的指標分別有哪些?各自的適用情況是什麼? 10

6樓:匿名使用者

集中趨勢指標:算術均數,幾何均數,中位數和百分位數。

集中趨勢適用情況:對稱分佈或偏度不大的資料,尤其適合正態分佈資料。

離散趨勢指標:極差,方差,標準差,四分位數間距。

離散趨勢適用情況:均數相差不大,單位相同的資料。

在統計學中,集中趨勢或**趨勢,在口語上也經常被稱為平均,表示一個機率分佈的中間值。最常見的幾種集中趨勢包括算數平均數、中位數及眾數。集中趨勢可以由有限的陣列中或理論上的機率分配中求得。

計量資料的頻數分佈有集中趨勢和離散趨勢兩個主要特徵。僅僅用集中趨勢來描述資料的分佈特徵是不夠的,只有把兩者結合起來,才能全面地認識事物。我們經常會碰到平均數相同的兩組資料其離散程度可以是不同的。

7樓:匿名使用者

集中趨勢:算術均數,幾何均數,中位數和百分位數。適用:對稱分佈或偏度不

大的資料,尤其適合正態分佈資料。

離散趨勢:極差,方差,標準差,四分位數間距,適用:均數相差不大,單位相同的資料;變異係數,適用:均數相差較大,單位不同的資料。

8樓:夢無歆

描述集中趨勢的指標:算數均數,中位數,幾何均數

描述離散趨勢的指標:方差與標準差,極差,百分位數,變異係數

9樓:匿名使用者

集中趨勢:平均數、眾數、中位數。平均數最準確,但有極端資料或資料模糊不清時中位數眾數適用,

離散趨勢:方差,平均差。平均差是方差的算數平方根,方差不受正負號影響,應用廣泛。

這都是統計概率論裡面的知識點吧

請問ps中閾值有什麼作用,可以用它來做什麼

10樓:匿名使用者

自然中每一種顏色都有一個值,通常由rgb(即紅、綠、藍三原色)按比例混合就會得到各種不同的顏色。

閾值處理**是對顏色進行特殊處理的一種方法。

詳細說,閾值是一個轉換臨界點,不管你的**是什麼樣的彩色,它最終都會把**當黑白**處理,也就是說你設定了一個閾值之後,它會以此值作標準,凡是比該值大的顏色就會轉換成白色,低於該值的顏色就轉換成黑色,所以最後的結果是,你得到一張黑白的**。

用閾值的作用:當然就是得到一張對比度不同的黑白**了。

怎麼用,用來幹什麼?

舉例:你可以開啟一張**,新建幾層,用閾值改這幾層,得到不同的黑白**,然後用得到的這些**,通過圖層混合的不同模式以及更改不同的透明度,

實質最後就是得到不同效果的**

還有你也可以先用各種濾鏡對這些黑白圖處理,然後再通過圖層的混合新增到其它圖上,得到各種效果。

這個其實就要自己不斷嘗試下了,很多效果都是不斷嘗試來的嘛,人家做得再好,你一直跟著模仿即使模仿得再好,也不及自己學會創造的東西。

什麼是中位數,中位數是什麼意思?

中位數 median 統計學名詞。將資料排序 從大到小或從小到大 後,位置在最中間的數值。即將資料分成兩部分,一部分大於該數值,一部分小於該數值。中位數的位置 當樣本數為奇數時,中位數 第 n 1 2個資料 當樣本數為偶數時,中位數為第n 2個資料與第n 2 1個資料的算術平均值 理性認識 把一組資...

眾數中位數怎麼算,怎麼算中位數和眾數?

一 眾數 1 一組資料中,出現次數最多的數就叫這組資料的眾數。如 1,2,3,3,4,6,6,7,8,9的眾數是3和6。二 中位數 把所有的同類資料按照大小的順序排列。如果資料的個數是奇數,則中間那個資料就是這群資料的中位數 如果資料的個數是偶數,則中間那2個資料的算術平均值就是這群資料的中位數。如...

怎麼分辨什麼時候用眾數,平均數,中位數來表示一組資料的平均水

眾數。一組資料中出現次數最多的那個資料,叫做這組資料的眾數。眾數的特點。眾數在一組資料中出現的次數最多 眾數反映了一組資料的集中趨勢,當眾數出現的次數越多,它就越能代表這組資料的整體狀況,並且它能比較直觀地瞭解到一組資料的大致情況。但是,當一組資料大小不同,差異又很大時,就很難判斷眾數的準確值了。此...