計算機中的數字編碼問題,原碼,反碼,補碼。。RT

2021-05-17 07:48:58 字數 7911 閱讀 5824

1樓:匿名使用者

.某機器數為1000 0000b,若它代表0,則它是 原碼或移碼 形式,若代表-128,則它是_補__碼形式,若代表-127,則它是_反___碼形式

2樓:這個沒人用了把

代表0,是原碼。所謂原碼就是二進位制定點表示法,即最高位為符號位,「0」表示正,「1」表示負,其餘位表示數值的大小。

代表-128 是反碼。反碼錶示法規定:正數的反碼與其原碼相同;負數的反碼是對其原碼逐位取反,但符號位除外。

原碼10010= 反碼11101 (10010,1為符號碼,故為負)

(11101) 二進位制= -13 十進位制

代表127 是補碼。補碼錶示法規定:正數的補碼與其原碼相同;負數的補碼是在其反碼的末位加1。

計算機有符號數的表示方法,原碼、補碼、反碼中最後的那個b是什麼意思?

3樓:做而論道

b,是二進位制數的標記。

h,是16進位制數的標記。

o,是八進位制數的標記,也有用 q 的。

十進位制,不標也可,要標就標上 d。

4樓:可軒

字尾b,表示二進位制機器碼。

計算機的原碼,反碼,補碼是怎麼回事?可以舉例說明嗎?

5樓:王王王小六

原碼、反碼和補碼是計算機中對

數字二進位制的三種表示方法。

1、原碼

原碼(true form)是一種計算機中對數字的二進位制定點表示方法。原碼錶示法在數值前面增加了一位符號位(即最高位為符號位):正數該位為0,負數該位為1(0有兩種表示:

+0和-0),其餘位表示數值的大小。

例如:用8位二進位制表示一個數,+11的原碼為00001011,-11的原碼就是10001011。

2、反碼

反碼是數值儲存的一種,多應用於系統環境設定,如linux平臺的目錄和檔案的預設許可權的設定umask,就是使用反碼原理。反碼的表示方法是:正數的反碼與其原碼相同;負數的反碼是對正數逐位取反,符號位保持為1。

例如:[+7]反= 0 0000111 b;

[-7]反= 1 1111000 b。

3、補碼

正數:正數的補碼和原碼相同。負數:

負數的補碼則是符號位為「1」。並且,這個「1」既是符號位,也是數值位。數值部分按位取反後再在末位(最低位)加1。

也就是「反碼+1」。

例如:[+7]補= 0 0000111 b;

[-7]補= 1 1111001 b。

擴充套件資料

原碼、反碼、補碼的轉換方法如下:

(1) 已知原碼,求補碼。

例:已知某數x的原碼為10110100b,試求x的補碼和反碼。

首先通過原碼的首位確定該數字的正負,若為正數,反碼與原碼相同,補碼比原碼在末尾加1;若為負數,求其反碼時,符號位不變,數值部分按位求反;求其補碼時,再在其反碼的末位加1。

(2)已知補碼,求原碼。

按照求負數補碼的逆過程,數值部分應是最低位減1,然後取反。但是對二進位制數來說,先減1後取反和先取反後加1得到的結果是一樣的,故仍可採用取反加1的方法。

6樓:匿名使用者

計算機以二進位制補碼儲存資料

以16位機器為例:

比如83的二

進位制碼為:0000 0000 0101 0011由於正數的原始碼、反嗎、補碼,上面的既是原始碼,也是反碼和補碼下面通過負數講解原始碼、反碼、補碼之間的關係以-83為例

先求出-83絕對值的原始碼:0000 0000 0101 0011計算機區分正負數通過判斷最高位符號位,1為負數、0為正數那麼-83的原始碼為:1000 0000 0101 0011反碼在原始碼基礎上按位取反,符號位不變:

1111 1111 1010 1100

補碼在反碼的基礎上加1:1111 1111 1010 1101補碼轉原始碼:補碼基礎上按位取反後加一,符號位在取反時不變,加一時最高位符號位有進位的,進位忽略

取反:1000 0000 0101 0010加1:1000 0000 0101 0011

7樓:匿名使用者

十進位制→ 二進位制(怎麼算?要是不知道看計算機基礎的書去)47   → 101111

有符號的整數    原碼    反碼    補碼47      00101111  11010000  00101111(正數補碼和原碼相同)

-47      00101111  11010000  11010001(負數補碼是在反碼上加1)

補碼.原碼.反碼怎麼運算的啊.詳細一點

8樓:匿名使用者

數在計算機中是以二進位制形式表示的。

數分為有符號數和無符號數。

原碼、反碼、補碼都是有符號定點數的表示方法。

一個有符號定點數的最高位為符號位,0是正,1是副。

以下都以8位整數為例,

原碼就是這個數本身的二進位制形式。

例如0000001 就是+1

1000001 就是-1

正數的反碼和補碼都是和原碼相同。

負數的反碼是將其原碼除符號位之外的各位求反

[-3]反=[10000011]反=11111100

負數的補碼是將其原碼除符號位之外的各位求反之後在末位再加1。

[-3]補=[10000011]補=11111101

一個數和它的補碼是可逆的。

為什麼要設立補碼呢?

第一是為了能讓計算機執行減法:

[a-b]補=a補+(-b)補

第二個原因是為了統一正0和負0

正零:00000000

負零:10000000

這兩個數其實都是0,但他們的原碼卻有不同的表示。

但是他們的補碼是一樣的,都是00000000

特別注意,如果+1之後有進位的,要一直往前進位,包括符號位!(這和反碼是不同的!)

[10000000]補

=[10000000]反+1

=11111111+1

=(1)00000000

=00000000(最高位溢位了,符號位變成了0)

有人會問

10000000這個補碼錶示的哪個數的補碼呢?

其實這是一個規定,這個數表示的是-128

所以n位補碼能表示的範圍是

-2^(n-1)到2^(n-1)-1

比n位原碼能表示的數多一個

又例:1011

原碼:01011

反碼:01011 //正數時,反碼=原碼

補碼:01011 //正數時,補碼=原碼

-1011

原碼:11011

反碼:10100 //負數時,反碼為原碼取反

補碼:10101 //負數時,補碼為原碼取反+1

0.1101

原碼:0.1101

反碼:0.1101 //正數時,反碼=原碼

補碼:0.1101 //正數時,補碼=原碼

-0.1101

原碼:1.1101

反碼:1.0010 //負數時,反碼為原碼取反

補碼:1.0011 //負數時,補碼為原碼取反+1

總結:在計算機內,定點數有3種表示法:原碼、反碼和補碼

所謂原碼就是前面所介紹的二進位制定點表示法,即最高位為符號位,「0」表示正,「1」表示負,其餘位表示數值的大小。

反碼錶示法規定:正數的反碼與其原碼相同;負數的反碼是對其原碼逐位取反,但符號位除外。

補碼錶示法規定:正數的補碼與其原碼相同;負數的補碼是在其反碼的末位加1。

1、原碼、反碼和補碼的表示方法

(1) 原碼:在數值前直接加一符號位的表示法。

例如: 符號位 數值位

[+7]原= 0 0000111 b

[-7]原= 1 0000111 b

注意:a. 數0的原碼有兩種形式:

[+0]原=00000000b [-0]原=10000000b

b. 8位二進位制原碼的表示範圍:-127~+127

2)反碼:

正數:正數的反碼與原碼相同。

負數:負數的反碼,符號位為「1」,數值部分按位取反。

例如: 符號位 數值位

[+7]反= 0 0000111 b

[-7]反= 1 1111000 b

注意:a. 數0的反碼也有兩種形式,即

[+0]反=00000000b

[- 0]反=11111111b

b. 8位二進位制反碼的表示範圍:-127~+127

3)補碼的表示方法

1)模的概念:把一個計量單位稱之為模或模數。例如,時鐘是以12進位制進行計數迴圈的,即以12為模。

在時鐘上,時針加上(正撥)12的整數位或減去(反撥)12的整數位,時針的位置不變。14點鐘在捨去模12後,成為(下午)2點鐘(14=14-12=2)。從0點出發逆時針撥10格即減去10小時,也可看成從0點出發順時針撥2格(加上2小時),即2點(0-10=-10=-10+12=2)。

因此,在模12的前提下,-10可對映為+2。由此可見,對於一個模數為12的迴圈系統來說,加2和減10的效果是一樣的;因此,在以12為模的系統中,凡是減10的運算都可以用加2來代替,這就把減法問題轉化成加法問題了(注:計算機的硬體結構中只有加法器,所以大部分的運算都必須最終轉換為加法)。

10和2對模12而言互為補數。

同理,計算機的運算部件與暫存器都有一定字長的限制(假設字長為8),因此它的運算也是一種模運算。當計數器計滿8位也就是256個數後會產生溢位,又從頭開始計數。產生溢位的量就是計數器的模,顯然,8位二進位制數,它的模數為28=256。

在計算中,兩個互補的數稱為「補碼」。

2)補碼的表示: 正數:正數的補碼和原碼相同。

負數:負數的補碼則是符號位為「1」,數值部分按位取反後再在末位(最低位)加1。也就是「反碼+1」。

例如: 符號位 數值位

[+7]補= 0 0000111 b

[-7]補= 1 1111001 b

補碼在微型機中是一種重要的編碼形式,請注意:

a.採用補碼後,可以方便地將減法運算轉化成加法運算,運算過程得到簡化。正數的補碼即是它所表示的數的真值,而負數的補碼的數值部份卻不是它所表示的數的真值。

採用補碼進行運算,所得結果仍為補碼。

b.與原碼、反碼不同,數值0的補碼只有一個,即 [0]補=00000000b。

c.若字長為8位,則補碼所表示的範圍為-128~+127;進行補碼運算時,應注意所得結果不應超過補碼所能表示數的範圍。

9樓:匿名使用者

原碼, 反碼和補碼的概念.對於一個數, 計算機要使用一定的編碼方式進行儲存. 原碼, 反碼, 補碼是機器儲存一個具體數字的編碼方式。

原碼就是符號位加上真值的絕對值, 即用第一位表示符號, 其餘位表示值。反碼就是正數的反碼是其本身,負數的反碼是在其原碼的基礎上, 符號位不變,其餘各個位取反。補碼就是正數的補碼就是其本身,負數的補碼是在其原碼的基礎上, 符號位不變, 其餘各位取反。

1. 原碼

原碼就是符號位加上真值的絕對值, 即用第一位表示符號, 其餘位表示值. 比如如果是8位二進位制:

[+1]原 = 0000 0001

[-1]原 = 1000 0001

第一位是符號位. 因為第一位是符號位, 所以8位二進位制數的取值範圍就是:

[1111 1111 , 0111 1111]

即[-127 , 127]

原碼是人腦最容易理解和計算的表示方式。

2. 反碼

反碼的表示方法是:

正數的反碼是其本身

負數的反碼是在其原碼的基礎上, 符號位不變,其餘各個位取反。

[+1] = [00000001]原 = [00000001]反

[-1] = [10000001]原 = [11111110]反

可見如果一個反碼錶示的是負數, 人腦無法直觀的看出來它的數值. 通常要將其轉換成原碼再計算。

3. 補碼

補碼的表示方法是:

正數的補碼就是其本身

負數的補碼是在其原碼的基礎上, 符號位不變, 其餘各位取反, 最後+1. (即在反碼的基礎上+1)

[+1] = [00000001]原 = [00000001]反 = [00000001]補

[-1] = [10000001]原 = [11111110]反 = [11111111]補

對於負數,補碼錶示方式也是人腦無法直**出其數值的。通常也需要轉換成原碼在計算其數值。

為何要使用原碼, 反碼和補碼

在開始深入學習前, 我的學習建議是先"死記硬背"上面的原碼, 反碼和補碼的表示方式以及計算方法。

現在我們知道了計算機可以有三種編碼方式表示一個數. 對於正數因為三種編碼方式的結果都相同:

[+1] = [00000001]原 = [00000001]反 = [00000001]補

所以不需要過多解釋. 但是對於負數:

[-1] = [10000001]原 = [11111110]反 = [11111111]補

可見原碼, 反碼和補碼是完全不同的. 既然原碼才是被人腦直接識別並用於計算表示方式, 為何還會有反碼和補碼呢?

首先, 因為人腦可以知道第一位是符號位, 在計算的時候我們會根據符號位, 選擇對真值區域的加減. (真值的概念在本文最開頭). 但是對於計算機, 加減乘數已經是最基礎的運算, 要設計的儘量簡單.

計算機辨別"符號位"顯然會讓計算機的基礎電路設計變得十分複雜! 於是人們想出了將符號位也參與運算的方法. 我們知道, 根據運演算法則減去一個正數等於加上一個負數, 即:

1-1 = 1 + (-1) = 0 , 所以機器可以只有加法而沒有減法, 這樣計算機運算的設計就更簡單了。

於是人們開始探索 將符號位參與運算, 並且只保留加法的方法. 首先來看原碼:

計算十進位制的表示式: 1-1=0

1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2

如果用原碼錶示, 讓符號位也參與計算, 顯然對於減法來說, 結果是不正確的.這也就是為何計算機內部不使用原碼錶示一個數。

為了解決原碼做減法的問題, 出現了反碼:

計算十進位制的表示式: 1-1=0

1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0

發現用反碼計算減法, 結果的真值部分是正確的. 而唯一的問題其實就出現在"0"這個特殊的數值上. 雖然人們理解上+0和-0是一樣的, 但是0帶符號是沒有任何意義的.

而且會有[0000 0000]原和[1000 0000]原兩個編碼表示0。

於是補碼的出現, 解決了0的符號以及兩個編碼的問題:

1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = [0000 0001]補 + [1111 1111]補 = [0000 0000]補=[0000 0000]原

這樣0用[0000 0000]表示, 而以前出現問題的-0則不存在了.而且可以用[1000 0000]表示-128:

(-1) + (-127) = [1000 0001]原 + [1111 1111]原 = [1111 1111]補 + [1000 0001]補 = [1000 0000]補

-1-127的結果應該是-128, 在用補碼運算的結果中, [1000 0000]補 就是-128. 但是注意因為實際上是使用以前的-0的補碼來表示-128, 所以-128並沒有原碼和反碼錶示.(對-128的補碼錶示[1000 0000]補算出來的原碼是[0000 0000]原, 這是不正確的)

使用補碼, 不僅僅修復了0的符號以及存在兩個編碼的問題, 而且還能夠多表示一個最低數. 這就是為什麼8位二進位制, 使用原碼或反碼錶示的範圍為[-127, +127], 而使用補碼錶示的範圍為[-128, 127]。

因為機器使用補碼, 所以對於程式設計中常用到的32位int型別, 可以表示範圍是: [-231, 231-1] 因為第一位表示的是符號位.而使用補碼錶示時又可以多儲存一個最小值。

請教關於計算機資料的傳輸,原碼反碼補碼

數學中的正負數可以用正 負號表示,但在計算機中任何資訊都只能用10表示,所以在計算機中為了表示正負,把一個數的最高位作為符號位,0表示正數,1表示負數,這樣就可以參加運算 例如,用8位2進製表示十進位制 29和 29分別為 00011101和10011101.對於有符號的定點數有3種表示法 原碼,補...

在計算機中位元組的單位是什麼,計算機中的資料單位和儲存單位是什麼

計算機資訊資料單位和儲存單位有 b 位元組 kb 千位元組 mb 兆位元組 以及 gb 十億位元組 等,位元組也是儲存器儲存資訊的最小單位,通常用 b 來表示。每級為前一級的1024倍,比如1kb 1024b,1m 1024kb。換算關係如下 計算機儲存單位的進率是1024而不是1000的原因 目前...

計算機的原碼,反碼,補碼是怎麼回事?可以舉例說明嗎

計算機以二進位制補碼儲存資料 以16位機器為例 比如83的二進位制碼為 0000 0000 0101 0011 由於正數的原始碼 反嗎 補碼,上面的既是原始碼,也是反碼和補碼下面通過負數講解原始碼 反碼 補碼之間的關係以 83為例 先求出 83絕對值的原始碼 0000 0000 0101 0011 ...