1樓:匿名使用者
以物質質量來度量其慣性大小的物理量,其慣性大小與物質質量相應
轉動慣量
moment of inertia
剛體繞軸轉動慣性的度量.其數值為j=∑ mi*ri^2,
式中mi表示剛體的某個質點的質量,ri表示該質點到轉軸的垂直距離.
;求和號(或積分號)遍及整個剛體.轉動慣量只決定於剛體的形狀、質量分佈和轉軸的位置,而同剛體繞軸的轉動狀態(如角速度的大小)無關.規則形狀的均質剛體,其轉動慣量可直接計得.
不規則剛體或非均質剛體的轉動慣量,一般用實驗法測定.轉動慣量應用於剛體各種運動的動力學計算中.
描述剛體繞互相平行諸轉軸的轉動慣量之間的關係,有如下的平行軸定理:剛體對一軸的轉動慣量,等於該剛體對同此軸平行並通過質心之軸的轉動慣量加上該剛體的質量同兩軸間距離平方的乘積.由於和式的第二項恆大於零,因此剛體繞過質量中心之軸的轉動慣量是繞該束平行軸諸轉動慣量中的最小者.
補充轉動慣量的計算公式
轉動慣量和質量一樣,是迴轉物體保持其勻速圓周運動或靜止的特性,用字母j表示.
對於杆:
當迴轉軸過杆的中點並垂直於軸時;j=ml^2/12
其中m是杆的質量,l是杆的長度.
當迴轉軸過杆的端點並垂直於軸時:j=ml^2/3
其中m是杆的質量,l是杆的長度.
對與圓柱體:
當迴轉軸是圓柱體軸線時;j=mr^2/2
其中m是圓柱體的質量,r是圓柱體的半徑.
轉動慣量定理: m=jβ
其中m是扭轉力矩
j是轉動慣量
β是角加速度
例題:現在已知:一個直徑是80的軸,長度為500,材料是鋼材.計算一下,當在0.1秒內使它達到500轉/分的速度時所需要的力矩?
分析:知道軸的直徑和長度,以及材料,我們可以查到鋼材的密度,進而計算出這個軸的質量m,由公式ρ=m/v可以推出m=ρv=ρπr^2l.
根據在0.1秒達到500轉/分的角速度,我們可以算出軸的角加速度β=△ω/△t=500轉/分/0.1s
電機軸我們可以認為是圓柱體過軸線,所以j=mr^2/2.
所以m=jβ
=mr^2/2△ω/△t
=ρπr^2hr^2/2△ω/△t
=7.8*10^3 *3.14* 0.04^2 * 0.5 * 0.04^2 /2 * 500/60/0.1
=1.2786133332821888kg/m^2
轉動慣量計算公式
2樓:愛做作業的學生
1、對於細杆:
當回2、對於圓柱體:
3、對於細圓環:
4、對於立方體:
5、對於實心球體:
擴充套件資料
質量轉動慣量
其量值取決於物體的形狀、質量分佈及轉軸的位置。剛體的轉動慣量有著重要的物理意義,在科學實驗、工程技術、航天、電力、機械、儀表等工業領域也是一個重要參量。
電磁系儀表的指示系統,因線圈的轉動慣量不同,可分別用於測量微小電流(檢流計)或電量(衝擊電流計)。在發動機葉片、飛輪、陀螺以及人造衛星的外形設計上,精確地測定轉動慣量,都是十分必要的。
轉動慣量只決定於剛體的形狀、質量分佈和轉軸的位置,而同剛體繞軸的轉動狀態(如角速度的大小)無關。形狀規則的勻質剛體,其轉動慣量可直接用公式計算得到。
而對於不規則剛體或非均質剛體的轉動慣量,一般通過實驗的方法來進行測定,因而實驗方法就顯得十分重要。轉動慣量應用於剛體各種運動的動力學計算中。
3樓:黎祖南
i=mr^2
轉動慣量(moment of inertia)是剛體繞軸轉動時慣性(迴轉物體保持其勻速圓周運動或靜止的特點
4樓:匿名使用者
對於一個質點,轉動慣量i = mr²,其中 m 是其質量,r 是質點和轉軸的垂直距離。
轉動慣量在旋轉動力學中的角色相當於線性動力學中的質量,可形式地理解為一個物體對於旋轉運動的慣性。
5樓:卯菲孟雲
j=0.5m乘以r的平方
j是指轉動慣量:
m是指質量:
r是指該回轉體的半徑;
6樓:齋沙殳薄
先求扇形物體相對於過圓心與圓面垂直(扇形物體所對應圓的圓心)的軸轉動慣量,用扇形同半徑的圓盤的轉動慣量乘以360分之扇形的圓心角的度數。然後用平行軸定理求出扇形相對於扇形上的轉軸的轉動慣量
7樓:神王無敵
轉動慣量(moment of inertia)是剛體繞軸轉動時慣性(迴轉物體保持其勻速圓周運動或靜止的特性)的量度,用字母i或j表示。 在經典力學中,轉動慣量(又稱質量慣性矩,簡稱慣距)通常以i 或j表示,si 單位為 kg·m²。對於一個質點,i = mr²,其中 m 是其質量,r 是質點和轉軸的垂直距離。
轉動慣量在旋轉動力學中的角色相當於線性動力學中的質量,可形式地理解為一個物體對於旋轉運動的慣性,用於建立角動量、角速度、力矩和角加速度等數個量之間的關係。
此外,計算剛體的轉動慣量時常會用到平行軸定理、垂直軸定理(亦稱正交軸定理)及伸展定則。
8樓:匿名使用者
t=j*(△ω/△t) 測量公式
9樓:永幼簡薄
對於一個質點,i
=mr^2,其中
m是其質量,r
是質點和轉軸的垂直距離。
這個定義只適用於
r為恆定值的計算。
準確的定義要用積分式子。是對
r^2dm
的積分。
轉動慣量怎麼求???
10樓:賦予你我的眼
轉動慣量的計算公式為:
1、對於細杆
(1)當迴轉軸過杆的中點(質心)並垂直於杆時,其中m是杆的質量,l是杆的長度:
(2)當迴轉軸過杆的端點並垂直於杆時,其中m是杆的質量,l是杆的長度:
2、對於圓柱體
當迴轉軸是圓柱體軸線時,其中m是圓柱體的質量,r是圓柱體的半徑:
3、對於細圓環
當迴轉軸通過環心且與環面垂直時:
當迴轉軸通過環邊緣且與環面垂直時:
4、對於薄圓盤
當迴轉軸通過中心與盤面垂直時:
當迴轉軸通過邊緣與盤面垂直時,r為其半徑:
5、對於空心圓柱
當迴轉軸為對稱軸時,r1和r2分別為其內外半徑。
6、對於球殼
當迴轉軸為球殼的切線時:
7、對於實心球體
當迴轉軸為球體的中心軸時,r為球體半徑:
當迴轉軸為球體的切線時:
8、對於立方體
當迴轉軸為其中心軸時,l為立方體邊長:
9、對於長方體
當迴轉軸為其中心軸時,式中l1和l2是與轉軸垂直的長方形的兩條邊長:
擴充套件資料實驗測定:
實際情況下,不規則剛體的轉動慣量往往難以精確計算,需要通過實驗測定。
測定剛體轉動慣量的方法很多,常用的有三線擺、扭擺、復擺等。三線擺是通過扭轉運動測定物體的轉動慣量,其特點是物理影象清楚、操作簡便易行、適合各種形狀的物體,如機械零件、電機轉子、槍炮彈丸、電風扇的風葉等的轉動慣量都可用三線擺測定。這種實驗方法在理論和技術上有一定的實際意義。
11樓:小格調
轉動慣量的表示式為
若剛體的質量是連續分佈的,則轉動慣量的計算公式可寫成(式中mi表示剛體的某個質元的質量,r表示該質元到轉軸的垂直距離,ρ表示該處的密度,求和號(或積分號)遍及整個剛體。)
轉動慣量只決定於剛體的形狀、質量分佈和轉軸的位置,而與剛體繞軸的轉動狀態無關(如角速度的大小)。用公式可直接計算規則形狀均勻剛體的轉動慣量。對於不規則或非均勻剛體的轉動慣量,通常採用實驗法測量,因此實驗法是非常重要的。
12樓:顧世丨
您好 對於細杆
當迴轉軸過杆的中點並垂直於杆時;j=m(l^2)/12
其中m是杆的質量,l是杆的長度。
當迴轉軸過杆的端點並垂直於杆時:j=m(l^2)/3
其中m是杆的質量,l是杆的長度。
對於圓柱體
當迴轉軸是圓柱體軸線時;j=m(r^2)/2
其中m是圓柱體的質量,r是圓柱體的半徑。
對於細圓環
當迴轉軸通過中心與環面垂直時,j=mr^2;
當迴轉軸通過邊緣與環面垂直時,j=2mr^2;
r為其半徑
對於薄圓盤
當迴轉軸通過中心與盤面垂直時,j=﹙1/2﹚mr^2;
當迴轉軸通過邊緣與盤面垂直時,j=﹙3/2﹚mr^2;
r為其半徑
對於空心圓柱
當迴轉軸為對稱軸時,j=﹙1/2﹚m[(r1)^2+(r2)^2];
r1和r2分別為其內外半徑。
對於球殼
當迴轉軸為中心軸時,j=﹙2/3﹚mr^2;
當迴轉軸為球殼的切線時,j=﹙5/3﹚mr^2;
r為球殼半徑。
對於實心球體
當迴轉軸為球體的中心軸時,j=﹙2/5﹚mr^2;
當迴轉軸為球體的切線時,j=﹙7/5﹚mr^2;
r為球體半徑
對於立方體
當迴轉軸為其中心軸時,j=﹙1/6﹚ml^2;
當迴轉軸為其稜邊時,j=﹙2/3﹚ml^2;
當迴轉軸為其體對角線時,j=(3/16)ml^2;
l為立方體邊長。
1/3只知道轉動慣量的計算方式而不能使用是沒有意義的。下面給出一些(繞定軸轉動時)的剛體動力學公式。
角加速度與合外力矩的關係:
角加速度與合外力矩
式中m為合外力矩,β為角加速度。可以看出這個式子與牛頓第二定律是對應的。 角動量:
角動量剛體的定軸轉動動能:
轉動動能
注意這只是剛體繞定軸的轉動動能,其總動能應該再加上質心動能。
只用e=(1/2)mv^2不好分析轉動剛體的問題,是因為其中不包含剛體的任何轉動資訊,裡面的速度v只代表剛體的質心運動情況。由這一公式,可以從能量的角度分析剛體動力學的問題。
轉動慣量(moment of inertia)是剛體繞軸轉動時慣性(迴轉物體保持其勻速圓周運動或靜止的特性)的量度,用字母i或j表示。其量值取決於物體的形狀、質量分佈及轉軸的位置。轉動慣量只決定於剛體的形狀、質量分佈和轉軸的位置,而同剛體繞軸的轉動狀態(如角速度的大小)無關。
形狀規則的勻質剛體,其轉動慣量可直接用公式計算得到。而對於不規則剛體或非均質剛體的轉動慣量,一般通過實驗的方法來進行測定,因而實驗方法就顯得十分重要。轉動慣量的表示式為i=∑ mi*ri^2,若剛體的質量是連續分佈的,則轉動慣量的計算公式可寫成i=∫r^2dm=∫r^2ρdv(式中mi表示剛體的某個質元的質量,ri表示該質元到轉軸的垂直距離,ρ表示該處的密度,求和號(或積分號)遍及整個剛體。
)轉動慣量的量綱為l^2m,在si單位制中,它的單位是kg·m^2。
2/3平行軸定理:設剛體質量為m,繞通過質心轉軸的轉動慣量為ic,將此軸朝任何方向平行移動一個距離d,則繞新軸的轉動慣量i為:
i=ic+md^2
這個定理稱為平行軸定理。
一個物體以角速度ω繞固定軸z軸的轉動同樣可以視為以同樣的角速度繞平行於z軸且通過質心的固定軸的轉動。也就是說,繞z軸的轉動等同於繞過質心的平行軸的轉動與質心的轉動的疊加
垂直軸定理
垂直軸定理:一個平面剛體薄板對於垂直它的平面的軸的轉動慣量,等於繞平面內與垂直軸相交的任意兩正交軸的轉動慣量之和。
垂直軸定理
表示式: iz=ix+iy
式中ix,iy,iz分別代表剛體對x,y,z三軸的轉動慣量.
對於非平面薄板狀的剛體,亦有如下垂直軸定理成立[2]:
垂直軸定理
利用垂直軸定理可對一些剛體對一特定軸的轉動慣量進行較簡便的計算.
剛體對一軸的轉動慣量,可折算成質量等於剛體質量的單個質點對該軸所形成的轉動慣量。由此折算所得的質點到轉軸的距離 ,稱為剛體繞該軸的回轉半徑κ,其公式為 i=mκ^2,式中m為剛體質量;i為轉動慣量。謝謝望採納
轉動慣量怎麼求圓柱體的轉動慣量怎麼求?
轉動慣量的計算公式為 1 對於細杆 1 當迴轉軸過杆的中點 質心 並垂直於杆時,其中m是杆的質量,l是杆的長度 2 當迴轉軸過杆的端點並垂直於杆時,其中m是杆的質量,l是杆的長度 2 對於圓柱體 當迴轉軸是圓柱體軸線時,其中m是圓柱體的質量,r是圓柱體的半徑 3 對於細圓環 當迴轉軸通過環心且與環面...
輪胎是圓柱體嗎,輪胎是圓柱體還是球體
輪胎不是圓柱體。如果研究車輛整體的運動,輪胎可以看成圓柱體。研究輪胎的話,就不能看成圓柱體。為什麼我的輪胎是三角形的 輪胎是圓柱體還是球體 汽車輪胎是圓柱體。在同一個平面內有一條定直線和一條動線,當這個平面繞著這條定直線旋轉一週時,這條動線所成的面叫做旋轉面,這條定直線叫做旋轉面的軸,這條動線叫做旋...
圓柱體魚缸養什麼魚,小圓柱體魚缸養什麼魚好
太小不能樣帶攻擊性的魚類,養點孔雀 硃砂劍 金魚等。可以直上直下,不用調頭的魚 一般養金魚,鬥魚也可以,但只能養一條,其它大型魚類是養不好的。適合養什麼魚與魚缸形狀關係不大,與水位深淺,總水體容量關係密切。一個直徑米的圓柱體魚缸能養的魚,放在一個直徑10釐米的魚缸裡可能都塞不進去。圓柱體魚缸很容易導...