資料分析與數學分析的不同點,資料探勘與資料分析的區別是什麼?

2021-04-22 08:32:43 字數 4946 閱讀 5655

1樓:大雪的帳號

資料分析是指用適當的統計分析方法對收集來的大量資料進行分析,提取有用資訊專和形成

屬結論而對資料加以詳細研究和概括總結的過程。

資料分析的數學基礎在20世紀早期就已確立,但直到計算機的出現才使得實際操作成為可能,並使得資料分析得以推廣。資料分析是數學與電腦科學相結合的產物。

數學分析,又稱高階微積分,分析學中最古老、最基本的分支。一般指以微積分學和無窮級數一般理論為主要內容,幷包括它們的理論基礎(實數、函式和極限的基本理論)的一個較為完整的數學學科。它也是大學數學專業的一門基礎課程。

數學中的分析分支是專門研究實數與複數及其函式的數學分支。它的發展由微積分開始,並擴充套件到函式的連續性、可微分及可積分等各種特性。這些特性,有助我們應用在對物理世界的研究,研究及發現自然界的規律。

資料探勘與資料分析的區別是什麼?

2樓:cda資料分析師

1.資料探勘

資料探勘是指從大量的資料中,通過統計學、人工智慧、機器學習等方法,挖掘出未知的、且有價值的資訊和知識的過程。資料探勘主要側重解決四類問題:分類、聚類、關聯和**,就是定量、定性,資料探勘的重點在尋找未知的模式與規律。

輸出模型或規則,並且可相應得到模型得分或標籤,模型得分如流失概率值、總和得分、相似度、**值等,標籤如高中低價值使用者、流失與非流失、信用優良中差等。主要採用決策樹、神經網路、關聯規則、聚類分析等統計學、人工智慧、機器學習等方法進行挖掘。綜合起來,資料分析(狹義)與資料探勘的本質都是一樣的,都是從資料裡面發現關於業務的知識(有價值的資訊),從而幫助業務運營、改進產品以及幫助企業做更好的決策,所以資料分析(狹義)與資料探勘構成廣義的資料分析。

這些內容與資料分析都是不一樣的。

2.資料分析

其實我們可以這樣說,資料分析是對資料的一種操作手段,或者演算法。目標是針對先驗的約束,對資料進行整理、篩選、加工,由此得到資訊。資料探勘,是對資料分析手段後的資訊,進行價值化的分析。

而資料分析和資料探勘,又是甚至是遞迴的。就是資料分析的結果是資訊,這些資訊作為資料,由資料去挖掘。而資料探勘,又使用了資料分析的手段,周而復始。

由此可見,資料分析與資料探勘的區別還是很明顯的。

而兩者的具體區別在於:

(其實資料分析的範圍廣,包含了資料探勘,在這裡區別主要是指統計分析)

資料量上:資料分析的資料量可能並不大,而資料探勘的資料量極大。

約束上:資料分析是從一個假設出發,需要自行建立方程或模型來與假設吻合,而資料探勘不需要假設,可以自動建立方程。

物件上:資料分析往往是針對數字化的資料,而資料探勘能夠採用不同型別的資料,比如聲音,文字等。

結果上:資料分析對結果進行解釋,呈現出有效資訊,資料探勘的結果不容易解釋,對資訊進行價值評估,著眼於**未來,並提出決策性建議。

資料分析是把資料變成資訊的工具,資料探勘是把資訊變成認知的工具,如果我們想要從資料中提取一定的規律(即認知)往往需要資料分析和資料探勘結合使用。

舉個例子說明:你揣著50元去菜市場買菜,對於琳琅滿目的雞鴨魚豬肉以及各類蔬菜,想葷素搭配,你逐一詢問**,不斷進行統計分析,能各自買到多少肉,多少菜,大概能吃多久,心裡得出一組資訊,這就是資料分析。而關係到你做出選擇的時候就需要對這些資訊進行價值評估,根據自己的偏好,營養價值,科學的搭配,用餐時間計劃,最有價效比的組合等等,對這些資訊進行價值化分析,最終確定一個購買方案,這就是資料探勘。

資料分析與資料探勘的結合最終才能落地,將資料的有用性發揮到極致。

3樓:匿名使用者

資料分析:一般要分析的目標比較明確,分析條件也比較清楚。

資料探勘:目標不是很清晰,要依靠挖掘演算法來找出隱藏在大量資料中的規則、模式、規律等。

4樓:藍龍兄弟

資料分析

,是通過已有資料指標進行分析,一般輸出結果為趨勢圖例;

資料探勘,是資料分析的基礎支援,簡單來說,就是先對原始資料進行業務關聯性、時效性、有效性等邏輯性挖掘,其次抽取有效資料,清理、格式化資料,為資料分析提供資料支援!

5樓:木易夕懵

前面的已經把理論知識都差不多講清楚了,那我來講的更具體點吧。舉個例子,我們公司之前用的資料分析和資料探勘都是億信華辰的,但是是不同的兩個工具,資料分析是abi,資料探勘是豌豆dm,其中,abi打通資料生命週期各環節

從資料來源接入,到資料採集、資料處理,再到資料分析和挖掘,打通資料生命週期的各個環節,實現資料填報、處理、分析一體化,為使用者提供一站式資料服務。既能支援對分析表進行資料回填設定,又能完成資料融合,提升資料質量,服務資料分析。而豌豆dm提供全程視覺化的建模過程,從訓練資料集選擇、分析指標欄位設定、挖掘演算法、引數配置、模型訓練、模型評估、對比到模型釋出都可以通過零程式設計、視覺化的配置操作,簡單、便捷的完成。

「大資料分析」和「資料分析」的區別與聯絡

6樓:百度文庫精選

最低0.27元開通文庫會員,檢視完整內

原發布者:天成資訊

大資料和資料分析區別

大資料是指用現有的計算機軟硬體設施難以採集、儲存、管理、分析和使用的超大規模的資料集。大資料具有規模大、種類雜、快速化、價值密度低等特點(4v特性)。大資料的「大」是一個相對概念,沒有具體標準,如果一定要給一個標準,那么10-100tb通常稱為大資料的門檻。

     資料分析是一個大的概念,理論上任何對資料進行計算、處理從而得出一些有意義的結論的過程,都叫資料分析。從資料本身的複雜程度、以及對資料進行處理的複雜度和深度來看,可以把資料分析分為以下4個層次:資料統計,olap,資料探勘,大資料。

     大資料分析和資料分析是有區別和聯絡的。這裡重點關注兩者的是技術要求、使用場景、業務範圍等方面的區別和聯絡。重點要區分理論研究和實際應用兩方面區別和聯絡。

    第一:在分析方法上兩者並沒有本質不同    資料分析的核心工作是人對資料指標的分析、思考和解讀,人腦所能承載的資料量是極其有限的。所以,無論是「傳統資料分析」,還是「大資料分析」,均需要將原始資料按照分析思路進行統計處理,得到概要性的統計結果

供人分析。兩者在這個過程中是類似的,區別只是原始資料量大小所導致處理方式的不同。     第二:

在對統計學知識的使用重心上兩者存在較大的不同    傳統資料分析」使用的知識主要圍繞「能否通過少量的抽樣資料來推測真實世界」的主題。「大

7樓:匿名使用者

就是大資料,和資料,大資料應該是網際網路加後提供的概念,就是用電腦網路收集的大量資料,跨行業跨界是主要特點。資料分析是統計學的手段,一般就是數學。

資料探勘與資料分析的主要區別是什麼

8樓:vincent呂

從分析的目的來看,資料分析一般是對歷史資料進行統計學上的一些分析,資料探勘更側重於機器對未來的**,一般應用於分類、聚類、推薦、關聯規則等。

從分析的過程來看,資料分析更側重於統計學上面的一些方法,經過人的推理演譯得到結論;資料探勘更側重由機器進行自學習,直接到得到結論。

從分析的結果看,資料分析的結果是準確的統計量,而資料探勘得到的一般是模糊的結果。

「資料分析」的重點是觀察資料,「資料探勘」的重點是從資料中發現「知識規則」kdd(knowledge discover in database)。

「資料分析、資料統計」得出的結論是人的智力活動結果,「資料探勘」得出的結論是機器從學習集(或訓練集、樣本集)發現的知識規則。

「資料分析」需要人工建模,「資料探勘」自動完成數學建模。

9樓:cda資料分析師

1.資料探勘

資料探勘是指從大量的資料中,通過統計學、人工智慧、機器學習等方法,挖掘出未知的、且有價值的資訊和知識的過程。資料探勘主要側重解決四類問題:分類、聚類、關聯和**,就是定量、定性,資料探勘的重點在尋找未知的模式與規律。

輸出模型或規則,並且可相應得到模型得分或標籤,模型得分如流失概率值、總和得分、相似度、**值等,標籤如高中低價值使用者、流失與非流失、信用優良中差等。主要採用決策樹、神經網路、關聯規則、聚類分析等統計學、人工智慧、機器學習等方法進行挖掘。綜合起來,資料分析(狹義)與資料探勘的本質都是一樣的,都是從資料裡面發現關於業務的知識(有價值的資訊),從而幫助業務運營、改進產品以及幫助企業做更好的決策,所以資料分析(狹義)與資料探勘構成廣義的資料分析。

這些內容與資料分析都是不一樣的。

2.資料分析

其實我們可以這樣說,資料分析是對資料的一種操作手段,或者演算法。目標是針對先驗的約束,對資料進行整理、篩選、加工,由此得到資訊。資料探勘,是對資料分析手段後的資訊,進行價值化的分析。

而資料分析和資料探勘,又是甚至是遞迴的。就是資料分析的結果是資訊,這些資訊作為資料,由資料去挖掘。而資料探勘,又使用了資料分析的手段,周而復始。

由此可見,資料分析與資料探勘的區別還是很明顯的。

而兩者的具體區別在於:

(其實資料分析的範圍廣,包含了資料探勘,在這裡區別主要是指統計分析)

資料量上:資料分析的資料量可能並不大,而資料探勘的資料量極大。

約束上:資料分析是從一個假設出發,需要自行建立方程或模型來與假設吻合,而資料探勘不需要假設,可以自動建立方程。

物件上:資料分析往往是針對數字化的資料,而資料探勘能夠採用不同型別的資料,比如聲音,文字等。

結果上:資料分析對結果進行解釋,呈現出有效資訊,資料探勘的結果不容易解釋,對資訊進行價值評估,著眼於**未來,並提出決策性建議。

資料分析是把資料變成資訊的工具,資料探勘是把資訊變成認知的工具,如果我們想要從資料中提取一定的規律(即認知)往往需要資料分析和資料探勘結合使用。

舉個例子說明:你揣著50元去菜市場買菜,對於琳琅滿目的雞鴨魚豬肉以及各類蔬菜,想葷素搭配,你逐一詢問**,不斷進行統計分析,能各自買到多少肉,多少菜,大概能吃多久,心裡得出一組資訊,這就是資料分析。而關係到你做出選擇的時候就需要對這些資訊進行價值評估,根據自己的偏好,營養價值,科學的搭配,用餐時間計劃,最有價效比的組合等等,對這些資訊進行價值化分析,最終確定一個購買方案,這就是資料探勘。

資料分析與資料探勘的結合最終才能落地,將資料的有用性發揮到極致。

請問自學數學分析看哪本書合適,自學資料分析需要看哪些書的

小學的不清楚,如果是初高中,尤其是高中,推薦 教材動態全解 不是吹牛,我數學還不錯,不信看我的知道回答,很多是數學問題,這本書我一直在用,上面很詳細,題很典型,真的很不錯 我也是自學數分,個人認為主流的教材都可以 如復旦陳紀修的 華東師大的 科大常庚哲的等等,有老師給我推薦了張築生的數學分析新講,不...

數學分析與微積分的區別?自學先學哪個

一 側重點不同 1 數學分析課程更注重體系的完整性,可以學習那些被廣泛應用的微積分定理和結論前人是怎麼思考推理得到的,是怎麼來的,教的是怎麼思考,怎麼去發現規律和闡釋規律 2 而微積分課程把那些已經成熟的定理和結論形式化的教給學生,更多的是教怎麼用,教的是怎使用現成的工具解決面對的問題。二 課程不同...

實驗報告的實驗資料分析與處理怎麼寫

根據你的實驗資料根據實驗相關的一些定理 公式進行計算得出資料結果,然後根據算專出的資料結果屬進行分析,論證實驗成功或失敗,或者得出實驗條件下產生的某種現象或結果 實驗報告 實驗報告是把實驗的目的 方法 過程 結果等記錄下來,經過整理,寫成的書面彙報。應用寫作給出的定義如下 科技實驗報告是描述 記錄某...