求專家小升初的一道智力題。1 2 5 8?1 2 3,四捨五入為0。0 5 5,四捨五入為10。10 8 18,四捨五入為

2021-04-22 05:41:45 字數 8487 閱讀 5439

1樓:金字塔邏輯

5100

第一:用四bai舍五入

的方法du計算1+2+3+4+5+6+7+8+9,是50,比正常演算法多

zhidao5

第二:四捨五入只對個位數產生專影響,

屬那麼1+2+3+......+100,比正常演算法多5*10=50第三:5050+50=5100

2樓:future莔

5100,因為5050四捨五入是5100

3樓:匿名使用者

1+2+3+。。。。。+100=2550

4樓:劍露鋒芒

5050,用高斯的方法,(1+100)×50

求解一道邏輯智力題

5樓:匿名使用者

因為s知道兩數之和,卻由此推斷p不知道兩個數,所以說兩數之和s一定不能拆分成兩個素數的和,即m,n不可能都是素數,且m,n中不會有大於50的素數,否則的話m*n可以唯一分解,p知道了m,n的積就一定可以知道m,n了。

p從s的言語中能夠判斷出的資訊是:

1。m,n不會全是素數;

2。m,n中不會有大於50的素數;

3。m,n之和不能拆成兩個素數的和;

4。因為s自己也不知道這兩個數是什麼,所以這兩個數的和一定小於99+98,否則s就可以知道這兩個數是什麼了。

滿足以上條件的 s=m+n有以下的可能:

1117

2327

2935

3741

47196

然後p根據自己掌握的p=m*n立即算出m,n,這說明p=m*n是具有以下性質的特殊數字:

根據這個特殊的p,當s取上面的那些值的時候,只有一種s的取值使得方程

m+n=s,

m*n=p

在[2,99]內有唯一的整數解。

根據這個性質計算出的p有以下的情況(不妨設m<=n):

p = 18, s= 11, m = 2, n = 9

p = 24, s= 11, m = 3, n = 8

p = 28, s= 11, m = 4, n = 7

p = 50, s= 27, m = 2, n = 25

p = 52, s= 17, m = 4, n = 13

p = 54, s= 29, m = 2, n = 27

p = 76, s= 23, m = 4, n = 19

p = 92, s= 27, m = 4, n = 23

p = 96, s= 35, m = 3, n = 32

p = 100, s= 29, m = 4, n = 25

p = 110, s= 27, m = 5, n = 22

p = 112, s= 23, m = 7, n = 16

p = 114, s= 41, m = 3, n = 38

p = 124, s= 35, m = 4, n = 31

p = 130, s= 23, m = 10, n = 13

p = 138, s= 29, m = 6, n = 23

p = 140, s= 27, m = 7, n = 20

p = 148, s= 41, m = 4, n = 37

p = 150, s= 35, m = 5, n = 30

p = 152, s= 27, m = 8, n = 19

p = 154, s= 29, m = 7, n = 22

p = 160, s= 37, m = 5, n = 32

p = 162, s= 27, m = 9, n = 18

p = 168, s= 29, m = 8, n = 21

p = 170, s= 27, m = 10, n = 17

p = 172, s= 47, m = 4, n = 43

p = 174, s= 35, m = 6, n = 29

p = 176, s= 27, m = 11, n = 16

p = 182, s= 27, m = 13, n = 14

p = 186, s= 37, m = 6, n = 31

p = 190, s= 29, m = 10, n = 19

p = 196, s= 35, m = 7, n = 28

p = 198, s= 29, m = 11, n = 18

p = 204, s= 29, m = 12, n = 17

p = 208, s= 29, m = 13, n = 16

p = 216, s= 35, m = 8, n = 27

p = 232, s= 37, m = 8, n = 29

p = 234, s= 35, m = 9, n = 26

p = 238, s= 41, m = 7, n = 34

p = 246, s= 47, m = 6, n = 41

p = 250, s= 35, m = 10, n = 25

p = 252, s= 37, m = 9, n = 28

p = 270, s= 37, m = 10, n = 27

p = 276, s= 35, m = 12, n = 23

p = 280, s= 47, m = 7, n = 40

p = 288, s= 41, m = 9, n = 32

p = 294, s= 35, m = 14, n = 21

p = 304, s= 35, m = 16, n = 19

p = 306, s= 35, m = 17, n = 18

p = 310, s= 41, m = 10, n = 31

p = 322, s= 37, m = 14, n = 23

p = 336, s= 37, m = 16, n = 21

p = 340, s= 37, m = 17, n = 20

p = 348, s= 41, m = 12, n = 29

p = 364, s= 41, m = 13, n = 28

p = 370, s= 47, m = 10, n = 37

p = 378, s= 41, m = 14, n = 27

p = 390, s= 41, m = 15, n = 26

p = 396, s= 47, m = 11, n = 36

p = 400, s= 41, m = 16, n = 25

p = 408, s= 41, m = 17, n = 24

p = 414, s= 41, m = 18, n = 23

p = 418, s= 41, m = 19, n = 22

p = 442, s= 47, m = 13, n = 34

p = 462, s= 47, m = 14, n = 33

p = 480, s= 47, m = 15, n = 32

p = 496, s= 47, m = 16, n = 31

p = 510, s= 47, m = 17, n = 30

p = 522, s= 47, m = 18, n = 29

p = 532, s= 47, m = 19, n = 28

p = 540, s= 47, m = 20, n = 27

p = 546, s= 47, m = 21, n = 26

p = 550, s= 47, m = 22, n = 25

p = 552, s= 47, m = 23, n = 24

p = 9604, s= 196, m = 98, n = 98

最後p說出自己已經知道m,n以後,s也說自己知道了m,n,這說明s根據自己手中的兩數之和可以推斷出唯一的m,n來。

因此還要去除上面的情況中重複用到s的情況,得到下面的情況:

p = 52, s = 17, m = 4, n = 13

p = 9604, s = 196, m = 98, n = 98

如果規定了m<>n,則最後的解答就是

m=4 , n=13

6樓:匿名使用者

p從s的言語中能夠判斷出的資訊是:

1。m,n不會全是素數;

2。m,n中不會有大於50的素數;

3。m,n之和不能拆成兩個素數的和;

4。因為s自己也不知道這兩個數是什麼,所以這兩個數的和一定小於99+98,否則s就可以知道這兩個數是什麼了。

滿足以上條件的 s=m+n有以下的可能:

11 17

23 27

29 35

37 41

47 196

然後p根據自己掌握的p=m*n立即算出m,n,這說明p=m*n是具有以下性質的特殊數字:

根據這個特殊的p,當s取上面的那些值的時候,只有一種s的取值使得方程

m+n=s,

m*n=p

在[2,99]內有唯一的整數解。

根據這個性質計算出的p有以下的情況(不妨設m<=n):

p = 18, s= 11, m = 2, n = 9

p = 24, s= 11, m = 3, n = 8

p = 28, s= 11, m = 4, n = 7

p = 50, s= 27, m = 2, n = 25

p = 52, s= 17, m = 4, n = 13

p = 54, s= 29, m = 2, n = 27

p = 76, s= 23, m = 4, n = 19

p = 92, s= 27, m = 4, n = 23

p = 96, s= 35, m = 3, n = 32

p = 100, s= 29, m = 4, n = 25

p = 110, s= 27, m = 5, n = 22

p = 112, s= 23, m = 7, n = 16

p = 114, s= 41, m = 3, n = 38

p = 124, s= 35, m = 4, n = 31

p = 130, s= 23, m = 10, n = 13

p = 138, s= 29, m = 6, n = 23

p = 140, s= 27, m = 7, n = 20

p = 148, s= 41, m = 4, n = 37

p = 150, s= 35, m = 5, n = 30

p = 152, s= 27, m = 8, n = 19

p = 154, s= 29, m = 7, n = 22

p = 160, s= 37, m = 5, n = 32

p = 162, s= 27, m = 9, n = 18

p = 168, s= 29, m = 8, n = 21

p = 170, s= 27, m = 10, n = 17

p = 172, s= 47, m = 4, n = 43

p = 174, s= 35, m = 6, n = 29

p = 176, s= 27, m = 11, n = 16

p = 182, s= 27, m = 13, n = 14

p = 186, s= 37, m = 6, n = 31

p = 190, s= 29, m = 10, n = 19

p = 196, s= 35, m = 7, n = 28

p = 198, s= 29, m = 11, n = 18

p = 204, s= 29, m = 12, n = 17

p = 208, s= 29, m = 13, n = 16

p = 216, s= 35, m = 8, n = 27

p = 232, s= 37, m = 8, n = 29

p = 234, s= 35, m = 9, n = 26

p = 238, s= 41, m = 7, n = 34

p = 246, s= 47, m = 6, n = 41

p = 250, s= 35, m = 10, n = 25

p = 252, s= 37, m = 9, n = 28

p = 270, s= 37, m = 10, n = 27

p = 276, s= 35, m = 12, n = 23

p = 280, s= 47, m = 7, n = 40

p = 288, s= 41, m = 9, n = 32

p = 294, s= 35, m = 14, n = 21

p = 304, s= 35, m = 16, n = 19

p = 306, s= 35, m = 17, n = 18

p = 310, s= 41, m = 10, n = 31

p = 322, s= 37, m = 14, n = 23

p = 336, s= 37, m = 16, n = 21

p = 340, s= 37, m = 17, n = 20

p = 348, s= 41, m = 12, n = 29

p = 364, s= 41, m = 13, n = 28

p = 370, s= 47, m = 10, n = 37

p = 378, s= 41, m = 14, n = 27

p = 390, s= 41, m = 15, n = 26

p = 396, s= 47, m = 11, n = 36

p = 400, s= 41, m = 16, n = 25

p = 408, s= 41, m = 17, n = 24

p = 414, s= 41, m = 18, n = 23

p = 418, s= 41, m = 19, n = 22

p = 442, s= 47, m = 13, n = 34

p = 462, s= 47, m = 14, n = 33

p = 480, s= 47, m = 15, n = 32

p = 496, s= 47, m = 16, n = 31

p = 510, s= 47, m = 17, n = 30

p = 522, s= 47, m = 18, n = 29

p = 532, s= 47, m = 19, n = 28

p = 540, s= 47, m = 20, n = 27

p = 546, s= 47, m = 21, n = 26

p = 550, s= 47, m = 22, n = 25

p = 552, s= 47, m = 23, n = 24

p = 9604, s= 196, m = 98, n = 98

最後p說出自己已經知道m,n以後,s也說自己知道了m,n,這說明s根據自己手中的兩數之和可以推斷出唯一的m,n來。

因此還要去除上面的情況中重複用到s的情況,得到下面的情況:

p = 52, s = 17, m = 4, n = 13

p = 9604, s = 196, m = 98, n = 98

如果規定了m<>n,則最後的解答就是

m=4 , n=13

下面是程式:

#include

#include

#include

const int max_n = 99;

const char* output_file = "result.txt";

int s[max_n*2];

int p[max_n*max_n];

int prim[max_n];

int primcounter =0;

ofstream fout( output_file );

// 計算素數

void calprim() }

} // 根據條件1過濾

void usecon_1()

for( i = 0; i < primcounter; i++ )

if( prim[i] > max_n / 2 ) break;

for( i--; i < primcounter; i++ )

for( j = 2; j < max_n; j++ )

s[ prim[i] + j ] = -1;

// 因為s自己也不知道這兩個數是什麼

for( i = 98 + 99; i < max_n + max_n; i++ )

s[i] = -1;

fout << "滿足s第一句話的兩數之和" << endl;

for( i = 0; i < max_n * 2; i++ )

if( s[i] == 0 )

fout << i << endl;

} // 根據條件2過濾

void usecon_2() }

fout << "滿足p第一句話的兩數之積:" << endl;

for( i = 0; i < max_n * max_n; i++ )

if( p[i] == 1 || p[i] == 2 )

} }void usecon_3() }

} void main()

一道智力題

把12個球分別編上號,並隨意分成3組。不失一般性,分別為 1 2 3 4 5 6 7 8 9 10 11 12 第一稱 把 與 組放在天平兩端稱。結果有兩種情況 一種是平 另一種是不平,不妨假設組 重於組 先來看平的情況。則1 8號球全部正常。次品必在組 即在9 12號球中。在9 12號球中任選3個...

一道數學智力題,一道數學智力題有人知道答案嗎

設第五隻猴子拿走的那份有n個,則第五隻猴子到來的時候應該5n 1個桃子 而5n 1是第4個猴子拿走一份後剩下的4份,5n 1是的倍數 而5n 1 4n n 1,n 1是4的倍數,設n 1 4k,即n 4k 1 5n 1 20k 4 4 5k 1 即第四隻猴子拿走的那一份桃子是5k 1個 也就是第四隻...

智力題,急求答案,一道智力題 急求答案 線上等

猴子每走一步吃一個香蕉,不管前進還是後退 所以,讓猴子去 回 去的總路程少於100米.一.到25米 去回不會剩下 超過25米顯然不行.二.折返兩次 設猴子第一次走x米,1750,x 17,不然不能一次運走,總路程為50 2x,香蕉100.運道最後的香蕉 100 50 2x 50 2x,並且3x 50...