1樓:匿名使用者
選d 四種情況:三條平行為0,三線通過一點為1,兩條平行,另一個與這兩條線有兩個交點。三條線組成一個三角形,也就是兩兩相交就有三個了。
同一平面內三條直線互不重合,那麼交點的個數可能是?(所有可能)
2樓:不用梯子橫著放
先考慮上限,假設兩兩都交,但不相同,那麼最多為3個,容易知道這種情況能夠實現。最少當然是0個。2個是容易實現的,比如兩條平行,另一條與兩條相交。
1個也容易實現,比如三條交於同一點。所以最後答案為0,1,2,3
同一平面內三條直線互不重合,那麼交點的個數可能是( ) a.0,1,2 b.0,1,3 c.1,2,3 d
3樓:匿名使用者
因為三條直線位置不明確,所以分情況討論:
①三條直線互相平行,有0個交點;
②一條直線與兩平行線相交,有2個交點;
③三條直線都不平行,有1個或3個交點;
所以交點個數可能是0、1、2、3.
故選d.
在同一平面內的三條互不重合的直線,其交點個數是______
4樓:漫步聯盟
因為三條直
線位置不明確,所以分情況討論:
①三條直線互相平行,有0個交點;
②一條直線與兩平行線相交,有2個交點;
③三條直線都不平行,有1個或3個交點;
所以交點個數可能是0、1、2、3.
故答案四:0或1或2或3.
同一平面內三條線互不重合,那麼交點的個數可能是
5樓:三為閣
d. 0,1,2,3
0 三線平行
1 三線交於一點
2 兩線平行
3三線分別相交
6樓:匿名使用者
應該是d0123零是三條線平行。一是兩條交叉一條分開。二是兩條平行一條川過。三就好比一個三角形用直線做三個邊。
7樓:匿名使用者
d. 0,1,2,3
兩兩平行,0
相交於同一點,1
兩平行,一相交,2
互不平行,不相交於同一點.3
在同一平面內的三條互不重合的直線,其交點個數是()? 求正確答案,正確必採納
8樓:心無增減
0或者1或者2或者3
3條平行線:0交點
3條線交匯於1點:1交點
2條平行線與1條直線相交:2交點
三條直線彼此不平行:3交點
9樓:您的使用者被佔您
全都平行時沒有,兩條平行一條相交有兩個,全部不平行時有三個
在同一平面內的三條互不重合的直線,其交點個數是求正確答案,正確必採納
0或者1或者2或者3 3條平行線 0交點 3條線交匯於1點 1交點 2條平行線與1條直線相交 2交點 三條直線彼此不平行 3交點 全都平行時沒有,兩條平行一條相交有兩個,全部不平行時有三個 在同一平面內的三條互不重合的直線,其交點個數是 因為三條直 線位置不明確,所以分情況討論 三條直線互相平行,有...
如果再同一平面內有不從合的三條直線,那麼這三條直線有個交點
如果再同一平面內有不從合的三條直線,那麼這三條直線有 0或1或2或3 個交點.在同一平面內有不重合的三條直線那麼這三條直線有幾個交點 同一平面內不重合的三條直線 1 如果都平行那麼就沒有交點,也就是0個交點 2 如果三條線有共同的一交點的話,那麼這個就是1個交點 3 如果其中兩個平行,一個與他們中的...
在同一平面內,如果兩條直線都與一條直線平行,那麼這兩條直線
在同一平面bai內,如果兩條du直線都與一條直線平行,那麼zhi這兩條直線 相dao互平行 已知 直線專 屬ab ef,cd ef,求證 ab cd。證明 假設ab與cd不平行,則直線ab與cd相交。設它們的交點為p,於是經過點p就有兩條直線 ab cd 都和直線ef平行。這就與經過直線外一點有且只...