1樓:夜聽瀾雨
互斥事件,集合a與集合b的交集為空,則ab互斥,不能同時發生,也叫互不相容事件。也可敘述為:不可能同時發生的事件。記作a∩b(a∩b=φ)
2樓:匿名使用者
x<1與x>2不能同時成立
如何看待數學解題的方法多樣性
3樓:匿名使用者
講求多樣還要注重拓展。 在解決問題多樣化時,教學中教師要十分注重多樣中有「多樣」,即每種策略中還有多種策略。 例如:
「雞兔同籠問題」, 籠子裡有若干只雞、兔。從上面數,有10個頭,從下面數,有36只腳,雞和兔各有幾隻?學生猜想的方法有.
4樓:何秋光學前數學
01.選擇題的解法
1、直接法:
根據選擇題的題設條件,通過計算、推理或判斷,,最後得到題目的所求。
2、特殊值法:
(特殊值淘汰法)有些選擇題所涉及的數學命題與字母的取值範圍有關;
在解這類選擇題時,可以考慮從取值範圍內選取某幾個特殊值,代入原命題進行驗證,然後淘汰錯誤的,保留正確的。
3、淘汰法:
把題目所給的四個結論逐一代回原題的題幹中進行驗證,把錯誤的淘汰掉,直至找到正確的答案。
4、逐步淘汰法:
如果我們在計算或推導的過程中不是一步到位,而是逐步進行,既採用「走一走、瞧一瞧」的策略;
每走一步都與四個結論比較一次,淘汰掉不可能的,這樣也許走不到最後一步,三個錯誤的結論就被全部淘汰掉了。
5、數形結合法:
根據數學問題的條件和結論之間的內在聯絡,既分析其代數含義,又揭示其幾何意義;使數量關係和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解題思路,使問題得到解決。
02.常用的數學思想方法
1、數形結合思想:
就是根據數學問題的條件和結論之間的內在聯絡,既分析其代數含義,又揭示其幾何意義;
使數量關係和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解體思路,使問題得到解決。
2、聯絡與轉化的思想:
事物之間是相互聯絡、相互制約的,是可以相互轉化的。
數學學科的各部分之間也是相互聯絡,可以相互轉化的。
在解題時,如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡。
如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動與靜的轉化等等。
3、分類討論的思想:
在數學中,我們常常需要根據研究物件性質的差異,分各種不同情況予以考查;這種分類思考的方法,是一種重要的數學思想方法,同時也是一種重要的解題策略。
4、待定係數法:
當我們所研究的數學式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然後解這個方程或方程組就使問題得到解決。
5、配方法:
就是把一個代數式設法構造成平方式,然後再進行所需要的變化。配方法是初中代數中重要的變形技巧,配方法在分解因式、解方程、討論二次函式等問題,都有重要的作用。
6、換元法:
在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進一步解決問題的一種方法。換元法可以把一個較為複雜的式子化簡,把問題歸結為比原來更為基本的問題,從而達到化繁為簡,化難為易的目的。
7、分析法:
在研究或證明一個命題時,又結論向已知條件追溯,既從結論開始,推求它成立的充分條件,這個條件的成立還不顯然;則再把它當作結論,進一步研究它成立的充分條件,直至達到已知條件為止,從而使命題得到證明。這種思維過程通常稱為「執果尋因」
8、綜合法:
在研究或證明命題時,如果推理的方向是從已知條件開始,逐步推導得到結論,這種思維過程通常稱為「由因導果」
9、演繹法:
由一般到特殊的推理方法。
10、歸納法:
由一般到特殊的推理方法。
11、類比法:
眾多客觀事物中,存在著一些相互之間有相似屬性的事物,在兩個或兩類事物之間;根據它們的某些屬性相同或相似,推出它們在其他屬性方面也可能相同或相似的推理方法。類比法既可能是特殊到特殊,也可能一般到一般的推理。
03.函式、方程、不等式
常用的數學思想方法:
⑴數形結合的思想方法。
⑵待定係數法。
⑶配方法。
⑷聯絡與轉化的思想。
⑸影象的平移變換。
04.證明角的相等
1、對頂角相等。
2、角(或同角)的補角相等或餘角相等。
3、兩直線平行,同位角相等、內錯角相等。
4、凡直角都相等。
5、角平分線分得的兩個角相等。
6、同一個三角形中,等邊對等角。
7、等腰三角形中,底邊上的高(或中線)平分頂角。
8、平行四邊形的對角相等。
9、菱形的每一條對角線平分一組對角。
10、 等腰梯形同一底上的兩個角相等。
11、 關係定理:同圓或等圓中,若有兩條弧(或弦、或弦心距)相等,則它們所 對的圓心角相等。
12、 圓內接四邊形的任何一個外角都等於它的內對角。
13、 同弧或等弧所對的圓周角相等。
14、 弦切角等於它所夾的弧對的圓周角。
15、 同圓或等圓中,如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等。
16、 全等三角形的對應角相等。
17、 相似三角形的對應角相等。
18、 利用等量代換。
19、 利用代數或三角計算出角的度數相等
20、 切線長定理:
從圓外一點引圓的兩條切線,它們的切線長相等,並且這一點和圓心的連線平分兩條切線的夾角。
05.證明直線的平行或垂直
1、證明兩條直線平行的主要依據和方法:
⑴定義、在同一平面內不相交的兩條直線平行。
⑵平行定理、兩條直線都和第三條直線平行,這兩條直線也互相平行。
⑶平行線的判定:同位角相等(內錯角或同旁內角),兩直線平行。
⑷平行四邊形的對邊平行。
⑸梯形的兩底平行。
⑹三角形(或梯形)的中位線平行與第三邊(或兩底)
⑺一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,則這條直線平行於三角形的第三邊。
2、證明兩條直線垂直的主要依據和方法:
⑴兩條直線相交所成的四個角中,由一個是直角時,這兩條直線互相垂直。
⑵直角三角形的兩直角邊互相垂直。
⑶三角形的兩個銳角互餘,則第三個內角為直角。
⑷三角形一邊的中線等於這邊的一半,則這個三角形為直角三角形。
⑸三角形一邊的平方等於其他兩邊的平方和,則這邊所對的內角為直角。
⑹三角形(或多邊形)一邊上的高垂直於這邊。
⑺等腰三角形的頂角平分線(或底邊上的中線)垂直於底邊。
⑻矩形的兩臨邊互相垂直。
⑼菱形的對角線互相垂直。
⑽平分弦(非直徑)的直徑垂直於這條弦,或平分弦所對的弧的直徑垂直於這條弦。
⑾半圓或直徑所對的圓周角是直角。
⑿圓的切線垂直於過切點的半徑。
⒀相交兩圓的連心線垂直於兩圓的公共弦。
數學中的「和與或」有什麼區別
5樓:暴走少女
數學中的「和與或」只有兩個區別,數學邏輯概念和符號不同。
一、滿足條件不同
1、和是指兩個及兩個以上同屬性的事物相加所獲得的新事物,也可以狹義地理解為兩個數相加所得的結果。
2、或就是或者,只需滿足其一即可。
二、符號不同
1、和的符號是+,加數+加數=和。
2、「或」在數學邏輯連詞中的符號表示為:∨,例: p或q 記作 p∨q。
6樓:體育wo最愛
和——表示的是兩個必須同時滿足
或——表示的是兩個中只要其中一個滿足
7樓:baby小妖紫
例如a和b,意思就是a。b都得滿足,
a或b,就是它倆滿足其中一個就行了。
8樓:旦旦
在數學邏輯關係中,和就是滿足所有;或就是或者,只需滿足其一即可。並且通常或包含和。
9樓:中冷眼
和表示所有的條件同時成立
或表示至少有一個條件成立
10樓:agfox求解
和指的是兩者都
或指的是兩者其一
11樓:守護丶只為等待
a或b的話 滿足
抄其中一
個就行了 那麼襲另一個是必bai須不滿足du還是可以滿足?zhi 如果可以滿足的話 那麼a或b與daoa和b又有什麼區別 如果另一個必須不滿足的話 x?=25 x=5或x=負5 滿足x等於5 另一個x等於負5必須不滿足 那難道負5的平方不等於25嗎?
用兩種不同的方式表示123這道題該怎麼做
1 2 3是非常奇特的三個自然數。因為1 2 3 6,1 2 3 6。自然數中,只有這三個數能做到和與積相等,很有意思哦。解析 123 100 20 3 123 125 2 用不同的方法表示23咋做 寶寶知道 育兒全能助手,辣媽交 笑笑用下面的圖表是23,你能用同樣的方法表示32嗎?表示二十三的數是...
你最喜歡哪個動物用兩種方式來提問,用英文
which animal do you like best?你最喜歡哪個動物?which animal do you love the most?你最喜歡哪個動物?用英文介紹一種你喜歡的動物狗 你最喜歡的動物是什麼 用英語怎麼說 怎樣用兩種英文方式表達 我最喜歡夏天 我最喜歡的動物是狗,用英語怎麼說...
用溫柔的兩種意思造句,用溫暖的兩種意思造句
她的性情溫柔。母親對嬰兒總是溫柔體貼的。她有堅強但溫柔的性格。小紅長得非常標緻,溫柔可愛,和手腳都是軟軟的。愛情把一切冷酷之心變成溫柔。她像只小羊羔一樣溫柔。他給了她一個溫柔的吻。他把她溫柔的話當作是幸福的吉兆。溫柔 1 溫和柔順。老師們要和藹溫柔地對待孩子們。2 柔和。他給了她一個溫柔的吻。今天的...